Home Up
Paul Horton, Readings in Computational Biology 2022
Course Overview (org format)
Papers Presented
Basic local alignment search tool.
Altschul, S F et al.
Journal of molecular biology, 215(3):403-10, 1990.
Machine learning algorithm as a diagnostic tool for hypoadrenocorticism in dogs
K.L. Reagan, B.A. Reagan, C. Gilor
Domestic Animal Endocrinology, 72:106396, 2020.
Fast and accurate short read alignment with Burrows–Wheeler transform
Heng Li & Richard Durbin
Bioinformatics, 25(14):1754-1760, 2009.
A beginners guide to SNP calling from high-throughput DNA-sequencing data
André Altmann, Peter Weber, Daniel Bader, Michael Preuss, Elisabeth B Binder, Bertram Müller-Myhsok
Hum Genet, 131(10):1541-54, 2012.
GPU accelerated sequence alignment with traceback for GATK haplotypecaller
S. Ren, N. Ahmed, K. Bertels and Z. Al-Ars
BMC Genomics, 20:2, 2019.
A machine learning approach to unmask novel gene signatures and prediction of Alzheimer’s disease within different brain regions
Abhibhav Sharma, Pinki Dey
Genomics, 113(4):1778-1789, 2021.
A Proposed Method for Detecting Blood Diseases by Non-Invasive Bio-Impedance Analysis
Yomna H. Shash, Mohamed A.A. El dosoky and Mohamed T. El-Wakad
Research Journal of Applied Sciences, Engineering and Technology,
15(7):270-280, 2018.
Genome-Wide Association Studies-Based Machine Learning for Prediction of Age-Related Macular Degeneration Risk
Qi Yan, Yale Jiang, HengHuang, Anand Swaroop, Emily Y. Chew, Daniel E.Weeks, Wei Chen, and Ying Ding
Translational Vision Science and Technology, 10:2, 2021.
Precise uncertain significance prediction using latent space matrix factorization models: genomics variant and heterogeneous clinical data-driven approaches
Sina Abdollahi, Peng-Chan Lin, Meng-Ru Shen and Jung-Hsien Chiang
Briefings in Bioinformatics, 22(4):bbaa281, 2021.
Pangenome Graphs
Jordan M. Eizenga, Adam M. Novak, Jonas A. Sibbesen, Simon Heumos, Ali Ghaffaari,
Glenn Hickey, Xian Chang, Josiah D. Seaman, Robin Rounthwaite,
Jana Ebler, Mikko Rautiainen, Shilpa Garg, Benedict Paten, Tobias Marschall, Jouni Sirén, Erik Garrison
Annual Review of Genomics and Human Genetics , 21(1):139-162, 2020.
Evaluation of supervised machine learning algorithms to distinguish between inflammatory
Linear Work Suffix Array Construction
Juha Karkkainen, Peter Sanders, Stefan Burkhardt
Journal of the ACM, 53:6, 2006.
A machine learning approach for predicting CRISPR-Cas9 cleavage
efficiencies and patterns underlying its mechanism of action
Shiran Abadi, Winston X. Yan, David Amar, Itay Mayrose
PLoS Computational Biology, 13:(10)e1005807, 2017.
Machine learning for analysis of gene expression data in fast- and
slow-progressing amyotrophic lateral sclerosis murine models
Ernesto Iadanza, Rachele Fabbri, Francesco Goretti, Giovanni Nardo,
Elena Niccolai, Caterina Bendotti, Amedeo Amedei
Biocybernetics and Biomedical Engineering
42,Issue1:273-284, 2022.
Comparing different supervised machine learning algorithms for disease prediction
Shahadat Uddin, Arif Khan, Md Ekramul Hossain and Mohammad Ali Moni
BMC Medical Informatics and Decision Making, 19:281, 2019.
Predicting DNA methylation status using word composition
Lingyi Lu, Kao Lin, Ziliang Qian, Haipeng Li, Yudong Cai, Yixue Li
Journal of Biomedical Science and Engineering, 03:(07) 672-676, 2010.
Evidence for CRHR1 in multiple sclerosis using supervised machine learning and meta-analysis in 12566 individuals
Farren B.S. Briggs, Selena E. Bartlett, Benjamin A. Goldstein, Joanne Wang, Jacob L. McCauley, Rebecca L. Zuvich, Philip L. De Jager, John D. Rioux, Adrian J. Ivinson, Alastair Compston, David A. Hafler, Stephen L. Hauser, Jorge R. Oksenberg, Stephen J. Sawcer, Margaret A. Pericak-Vance, Jonathan L. Haines, International Multiple Sclerosis Genetics Consortium, Lisa F. Barcellos
Human Molecular Genetics, 19:21, 2010.
DiaDeL: An accurate deep learning-based model with mutational
signatures for predicting metastasis stage and cancer types
Sina Abdollahi, Peng-Chan Lin and Jung-Hsien Chiang
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021.
Fast and accurate short read alignment with Burrows–Wheeler transform
Heng Li & Richard Durbin
Bioinformatics, 25(14):1754-1760, 2009. (encore)
Genome-Wide Association Studies-Based Machine Learning for Prediction of Age-Related Macular Degeneration Risk
Qi Yan, Yale Jiang, HengHuang, Anand Swaroop, Emily Y. Chew, Daniel E.Weeks, Wei Chen, and Ying Ding
Translational Vision Science and Technology, 10:2, 2021. (encore)
Planned Future Presentations
Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes
Jana Ebler, Peter Ebert, Wayne E. Clarke, Tobias Rausch, Peter A. Audano, Torsten Houwaart, Yafei Mao, Jan O. Korbel, Evan E. Eichler, Michael C., Zody, Alexander T. Dilthey and Tobias Marschall
Nature Genetics, Vol 54:518-525, 2022.
The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees
Naruya Saitou and Masatoshi Nei
Molecular biology and evolution, 4(4):406-425, 1987.
Entry Format
TITLE
Author, Author, ...
Journal, VOL:NUM, YYYY.