Home Up

Paul Horton, Readings in Computational Biology 2021

Course Overview (org format)

Papers Presented

  • Mammalian NUMT insertion is non-random
    J Tsuji, MC Frith, K Tomii, P Horton
    Nucleic Acids Research, 40(18), 9073–9088, 2012.
  • A beginners guide to SNP calling from high-throughput DNA-sequencing data
    André Altmann, Peter Weber, Daniel Bader, Michael Preuss, Elisabeth B Binder, Bertram Müller-Myhsok
    Hum Genet, 131(10):1541-54, 2012.
  • Identification of 12 cancer types through genome deep learning
    Yingshuai Sun, Sitao Zhu, ..., & Wenbin Chen
    Scientific Reports, 9:17256, 2019.
  • STAR: ultrafast universal RNA-seq aligner
    Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, Thomas R Gingeras
    Bioinformatics, 29(1):15-21, 2013.
  • Metagenomic study of the oral microbiota by Illumina high-throughput sequencing
    Vladimir Lazarevic, Katrine Whiteson, Susan Huse, David Hernandez, Laurent Farinelli, Magne Østerås, Jacques Schrenzel, and Patrice François
    Journal of Microbiological Methods, 79(3):266–271, 2009.
  • Assembly algorithms for next-generation sequencing data
    Jason R. Miller, Sergey Koren & Granger Sutton
    Genomics, 95(6):315–327, 2010.
  • Better Prediction of Protein Cellular Localization Sites with the k Nearest Neighbors Classifier
    Paul Horton & Kenta Nakai
    Proceedings ISMB-97, 147-152, 1997.
  • A Neural Algorithm of Artistic Style
    Leon A. Gatsy, Alexander S. Ecker, Matthias Bethge
    arXiv preprint arXiv, 1508.06576, 2015.
  • Predicting DNA Methylation from word Composition
    L Lu, K Lin, Z Qian, H Li, Y Cai, Y Li …
    Journal of Biomedical Science, 2010.
  • CPEM: Accurate cancer type classification bases on somatic alterations
    K Lee, H Jeong, S Lee, WK Jeong
    Scientific Reports, 2019.
  • Mutations in importin-β family nucleocytoplasmic transport receptors transportin-SR and importin-13 differentially affect binding to respective cargoes
    Makoto Kimura, Kenichiro Imai, Yuriko Morinaka, Yoshiko Hosono-Sakuma, Paul Horton, and Naoko Imamoto
    Scientific Reports, 11:15649, 2021.
  • A universal SNP and small-indel variant caller using deep neural networks
    Ryan Poplin, Pi-Chuan Chang,...,Mark A DePristo
    Nature Biotechnology, 36, 983–987, 2018.
  • BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
    Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J.
    Bioinformatics, 36, 1234–1240, 2019.
  • An introduction to deep learning on biological sequence data: example and solutions
    Vanessa Isabell Jurtz, Alexander Rosenberg Johansen, ..., Søren Kaae Sønderby
    Bioinformatics, 33:22, 3685–3690, 2017.
  • Biphasic regulation of transcriptional surge generated by the gene feedback loop in a two-component system
    W Liu, X Li, H Qi, Y Wu, J Qu, Z Yin, X Gao, A Han
    Bioinformatics,btab138, 2021.
  • Convolutional neural networks for classification of alignments of non-coding RNA sequences
    Genta Aoki, Yasubumi Sakakibara
    Bioinformatics, 34:13, i237–i244, 2018.
  • Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality
    Md Ali Hossain, Sheikh Muhammad Saiful Islam, Julian M W Quinn, Fazlul Huq, Mohammad Ali Moni
    J Biomed Inform, 100:103313, 2019.
  • Gene2vec: distributed representation of genes based on co-expression
    Jingcheng Du, Peilin Jia, Yulin Dai, Cui Tao, Zhongming Zhao & Degui Zhi
    BMC Genomics, 20(Supl 1):82, 2019
  • Predicting CTCF-mediated chromatin loops using CTCF-MP
    Ruochi Zhang, Yuchuan Wang, Yang Yang, Yang Zhang and Jian Ma
    Bioinformatics, 34:13, 2018.
  • BERT4Bitter: a bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides
    Phasit Charoenkwan, Chanin Nantasenamat, Md Mehedi Hasan, Balachandran Manavalan, Watshara Shoombuatong
    Bioinformatics, 1-7, 2021.
  • An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data
    Goo Jun, Mary Kate Wing, Gonçalo R. Abecasis, and Hyun Min Kang
    Genome Res., 25(6): 918–925, 2015.
  • qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
    Antti Häkkinen, Juha Koiranen, Julia Casado, ..., Sampsa Hautaniemi
    Bioinformatics, 36:20, 5086–5092, 2020.
  • MicroCellClust: mining rare and highly specific subpopulations from single-cell expression data
    Alexander Gerniers, Orian Bricard, Pierre Dupont
    Bioinformatics, 2021.
  • Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics
    Juan Jovel, Jordan Patterson, Weiwei Wang, Naomi Hotte, Sandra O’Keefe, Troy Mitchel, Troy Perry, Dina Kao, Andrew L. Mason, Karen L. Madsen and Gane K.-S. Wong
    Front Microbiol, 7:459, 2016.
  • Transfer learning for biomedical named entity recognition with neural networks
    John M. Giorgi and Gary D. Bader
    Bioinformatics, 34:23, 2018.
  • GPDBN: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction
    Zhiqin Wang, Ruiqing Li, Minghui Wang, Ao Li
    Bioinformatics, 1-8, 2021.
  • Fast and accurate short read alignment with Burrows–Wheeler transform
    Heng Li & Richard Durbin
    Bioinformatics, 25(14):1754-1760, 2009.
  • GASAL2: a GPU accelerated sequence alignment library for high-throughput NGS data
    Nauman Ahmed, Jonathan Lévy, Shanshan Ren, Hamid Mushtaq, Koen Bertels & Zaid Al-Ars
    BMC Bioinformatics, 20:520, 2019.
  • A machine learning-based method for prediction of macrocyclization patterns of polyketides and non-ribosomal peptides
    Priyesh Agrawal and Debasisa Mohanty
    Bioinformatics, 37:5, 2021.

  • Planned Future Presentations

    Entry Format

    <LI>TITLE<BR> Author, Author, ...<BR> <I>Journal</I>, <B>VOL</B>:NUM, YYYY.</LI>