Home Up
Paul Horton, Readings in Computational Biology 2019
Here, I plan to provide some material and references to research in computational biology.
Some papers presented during the course:
- Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas.
DGP van IJzendoorn, K Szuhai, …, & JVMG Bovée
PLoS Comput Biol., 15:e1006826, 2019.
- Systems Biology Approaches Toward Understanding Primary Mitochondrial Diseases
Elaina M. Maldonado, Fatma Taha, Joyeeta Rahman & Shamima Rahman
Front Genet., 10:19, 2019.
- Text mining and its potential applications in systems biology
Ananiadou, S., Kell, D. B., & Tsujii, J. I.
Trends in biotechnology, 24(12):571-579, 2006.
- Scalable and accurate deep learning with electronic health records
Alvin Rajkomar, Eyal Oren, …, & Jeffrey Dean
npj Digital Medicine, 1:18, 2018.
- Off-target predictions in CRISPR-Cas9 gene editing using deep learning
Lin, J., & Wong, K. C.
Bioinformatics, 34:i656-i663, 2018.
- Sequence-specific DNA binding Pyrrole–imidazole polyamides and their applications
Yusuke Kawamoto, Toshikazu Bando & Hiroshi Sugiyama
Bioorganic & Medicinal Chemistry, 26:1393-1411, 2018.
- A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations
ThienLuan Ho, Seung-Rohk Oh & HyunJin Kim
PLoS ONE, 12(10):e0186251, 2017.
- A general method applicable to the search for similarities in the amino acid sequence of two proteins
Needleman, S. B., & Wunsch, C. D.
Journal of molecular biology, 48(3):443-453, 1970.
- Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
Ryan Poplin, Avinash V. Varadarajan, Katy Blumer, Yun Liu, Michael V. McConnell, Greg S. Corrado, Lily Peng & Dale R. Webster
Nature Biomedical Engineering, 2, 158–164, 2018.
- A genome-scale analysis of mRNAs targeting to plant mitochondria: upstream AUGs in 5' untranslated regions reduce mitochondrial association
Vincent T, Vingadassalon A, Ubrig E, Azeredo K, Srour O, Cognat V, Graindorge S, Salinas T, Maréchal-Drouard L, and Duchêne AM
Plant Journal, 92(6):1132-1142, 2017.
- A review on biological inspired computation in cryptology
Subariah Ibrahim & Mohd Aizaini Maarof
Jurnal Teknologi Maklumat, 17:90-98, 2007.
- Machine learning in DNA microarray analysis for cancer classification
Sung-Bae Cho & Hong-Hee Won
Proceedings First APBC, 2003.
- Using natural language processing to extract clinically useful information from Chinese electronic medical records
Liang Chen, Liting Song, Yue Shao, Dewei Li & Keyue Ding
Int J Med Inform, 124:6-12, 2019.
- Dynamics of Translation of Single mRNA Molecules In Vivo
Xiaowei Yan, Tim A. Hoek, Ronald D. Vale, and Marvin E. Tanenbaum
Cell, 165(4):976-989, 2016.
- RNA localization
Yaron Shav-Tal and Robert H. Singer
J Cell Sci., 118:4077–4081, 2005.
- Identification of common molecular subsequences
Smith, T. F., & Waterman, M. S.
Journal of molecular biology, 147(1), 195–197, 1981.
- A linear space algorithm for computing maximal common subsequences
Hirschberg, D. S.
Communications of the ACM, 18(6), 341–343, 1975.
- The Next Generation of Transcription Factor Binding Site Prediction
Anthony Mathelier & Wyeth W. Wasserman
PLOS Computational Biology, 13:(9), e1003214, 2013.
- Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography
Sukrit Narula, Khader Shameer, Alaa Mabrouk Salem Omar, Joel T. Dudley & Partho P. Sengupta
Journal of the American College of Cardiology, 68, 2016.
- Biology Approaches Toward Understanding Primary Mitochondrial Diseases
Maldonado, E. M., Taha, F., Rahman, J., & Rahman, S.
Systems Frontiers in genetics, 10(19), 2019.
- The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.
Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P.,… & Handwerker, D. A.
Scientific Data, 3:160044, 2016.
- DNA sequencing at 40: past, present and future.
Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss, J. A., & Waterston, R. H.
Nature, 550:(7676), 345. 2017.
- Representational similarity analysis-connecting the branches of systems neuroscience.
Kriegeskorte, N., Mur, M., & Bandettini, P. A.
Frontiers in systems neuroscience, 2 4, 2008.
- Biomarker identification for diagnosis of schizophrenia with integrated analysis of fMRI and SNPs.
Cao, H., Lin, D., Duan, J., Wang, Y. P., & Calhoun, V.
2012 IEEE International Conference on Bioinformatics and Biomedicine, 1-6. IEEE, 2012.
- A Probabilistic Classification System for Predicting the Cellular Localization Sites of Proteins
Paul Horton and Kenta Nakai
Proceeding of the Fourth International Conference on Intelligent Systems for Molecular Biology (ISMB1996), 109–115, 1996.
- PMLPR: A novel method for predicting subcellular localization based on recommender systems.
Mehrabad, E. M., Hassanzadeh, R., & Eslahchi, C.
Scientific reports, 8(1), 12006, 2018.
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun
arXiv:1506.01497, 2015.
- Using recurrent neural network models for early detection of heart failure onset
Edward Choi Andy Schuetz Walter F Stewart and Jimeng Sun
Journal of the American Medical Informatics Association, 24(2), 2017, 361–370, 2016.
- Tackling the Challenges of FASTQ Referential Compression
Aníbal Guerra, Jaime Lotero, José Édinson Aedo and Sebastián Isaza
Bioinformatics and Biology Insights, 13: 1–19, 2019.
- Realizing drug repositioning by adapting a recommendation system to handle the process.
Ozsoy, M. G., Özyer, T., Polat, F., & Alhajj, R.
BMC bioinformatics, 19(1), 136, 2018.
- Predicting potential side effects of drugs by recommender methods and ensemble learning.
Zhang, W., Zou, H., Luo, L., Liu, Q., Wu, W., & Xiao, W.
Neurocomputing, 173:979-987, 2016.
- Mask R-CNN
Kaiming He, Georgia Gkioxari, Piotr Dollár & Ross Girshick
The IEEE International Conference on Computer Vision (ICCV), 2961-2969, 2017.
- The physical size of transcription factors is key to transcriptional regulation in chromatin domains
Kazuhiro Maeshima, Kazunari Kaizu, Sachiko Tamura, Tadasu Nozaki, Tetsuro Kokubo4 & Koichi Takahashi
J Phys Condens Matter, 27(6):064116, 2015.
- Karyopherins regulate nuclear pore complex barrier and transport function
Larisa E. Kapinos, Binlu Huang, Chantal Rencurel, & Roderick Y.H. Lim
J Cell Biol.216(11):3609–3624, 2017.
- Fast inexact mapping using advanced tree exploration on backward search methods
José Salavert, Andrés Tomás, Joaquín Tárraga, Ignacio Medina, Joaquín Dopazo & Ignacio Blanquer Torres
BMC Bioinformatics.16:18, 2015.
- Diffusion of size bidisperse spheres in dense granular shear flow
Ruihuan Cai, Hongyi Xiao, Jinyang Zheng & Yongzhi Zhao
Phys Rev E., 99(3-1):032902, 2019.
- Cell studio: A platform for interactive, 3D graphical simulation of immunological processes
Asaf Liberman , Danny Kario, Matan Mussel, Jacob Brill, Kenneth Buetow, Sol Efroni & Uri Nevo
APL Bioeng., 2(2):026107, 2018.
- Detection of DNA methylated microRNAs in hepatocellular carcinoma
Wafaa M. Ezzata, Khalda Said Amrb, Yasser A. Elhosarya, Abdelfattah E.Hegazyc, Hoda H. Fahimd, Noha H. Eltaweelb & Refaat R. Kamele
Gene, 702:153–157, 2019.
- Predicting cancer drug response using a recommender system
Suphavilai C., Bertrand, D., & Nagarajan, N.
Bioinformatics, 34(22):3907-3914, 2018.
- Detecting potential adverse drug reactions using a deep neural network model
Wang, C. S., Lin, P. J., Cheng, C. L., Tai, S. H., Yang, Y. H. K., & Chiang, J. H.
Journal of medical Internet research, 21(2):e11016, 2019.
- Use of a genetic algorithm in the cryptanalysis of simple substitution ciphers
Richard Spillman, Mark Janssen, Bob Nelson & Martin Kepner
Cryptologia, 17(1):31–44, 1993.
- Computational Analysis of mRNA Expression Profiles Identifies MicroRNA-29a/c as Predictor of Colorectal Cancer Early Recurrence
Tai-Yue Kuo, Edward Hsi, I-Ping Yang, Pei-Chien Tsai, Jaw-Yuan Wang & Suh-Hang Han
PLoS One., 7(2):e31587, 2012.
- Analysis of miRNA expression using machine learning
Henry Wirth, Volkan Cakir, Lydia Hopp & Hans Binder
Methods Mol Biol., 1107:257–278, 2014.
- Circulating Cell-free mRNA in Plasma as a Tumor Marker for Patients with Primary and Recurrent Gastric Cancer
Nobuyuki Tani, Daisuke Ichikawa, Daito Ikoma, Haruhisa Tomita, Soujin Sai, Hisashi Ikoma, Kazuma Okamoto, Toshiya Ochiai, Yuji Ueda, Eigo Otsuji, Hisakazu Yamagishi, Norimasa Miura & Goshi Shiota
Anticancer Res., 27(2):1207–12, 2007.
- Computation for ChIP-seq and RNA-seq studies
Shirley Pepke, Barbara Wold & Ali Mortazavi
Nat Methods., 6(11 Suppl):S22–32, 2009.
- Automated extraction of information on protein–protein interactions from the biological literature
Toshihide Ono, Haretsugu Hishigaki, Akira Tanigami & Toshihisa Takagi
Bioinformatics, 17(2):155-61, 2001.
- Machine Learning Approach for Identification of miRNA-mRNA Regulatory Modules in Ovarian Cancer
Sushmita Paul & Shubham Talbar
Proc. PReMI : Pattern Recognition and Machine Intelligence, , 438–447, 2017.
- Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning
Tanel Pärnamaa and Leopold Parts
G3: GENES, GENOMES, GENETICS , 7(5):1385–1392, 2017.
- Autoencoder Neural Networks for Outlier Correction in ECG-Based Biometric Identification
Mikolaj Karpinski, Volodymyr Khoma, Valerii Dudykevych, Yuriy Khoma & Dmytro Sabodashko
Proc. of The 4th IEEE International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems, Lviv, Ukraine, 2018.
- Basic Local Alignment Search Tool
Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers & David J. Lipman
J. Mol.Biol., 215:403–410 1990.
- Biomedical Event Extraction Using Convolutional Neural Networks and Dependency Parsing
Jari Björne and Tapio Salakoski
Proc. BioNLP, Melbourne, Australia, 98–108, 2018.
- Chief Complaint Classification with Recurrent Neural Networks
Scott Lee, Drew Levin, Pat Finley & Chad Heilig
J Biomed Inform., 93:103158 2019.
- DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning
Peng Ni, Neng Huan, Zhi Zhang, De-Peng Wang, Fan Liang, Yu Miao, Chuan-Le Xiao, Feng Luo & Jianxin Wang
Bioinformatics, btz276, 2019.
- Develop machine learning-based regression predictive models for engineering protein solubility
Xi Han, Xiaonan Wang & Kang Zhou
Bioinformatics, btz294, 2019.
- Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders
Gregory P. Way & Casey S. Greene
Proc. Pac Symp Biocomput., 23:80–91, 2018.
- Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning
Daniel S. Kermany, Michael Goldbaum, Wenjia Cai,…, M. Anthony Lewis, Huimin Xia & Kang Zhang
Cell, 172(5):1122-1131.e9, 2018.
- Incorporating dictionaries into deep neural networks for the Chinese clinical named entity recognition
Qi Wang, Yuhang Xia, Yangming Zhou, Tong Ruan, Daqi Gao & Ping He
Journal of Biomedical Informatics, 92:103133 2019.
- Long short-term memory RNN for biomedical named entity recognition
Chen Lyu, Bo Chen, Yafeng Ren & Donghong Ji
BMC Bioinformatics, 18:462, 2017.
- Transfer learning for biomedical named entity recognition with neural networks
John M. Giorgi & Gary D. Bader
Bioinformatics, 34(23):4087–4094, 2018.
- A Multimodal Approach to Predict Social Media Popularity
Mayank Meghawat, Satyendra Yadav, Debanjan Mahata, Yifang Yin, Rajiv Ratn Shah & Roger Zimmermann
Proc. IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), 2018.
- Profile hidden Markov models
Sean R. Eddy
Bioinformatics, 14(9):755–763, 1998.
- The sequence of sequencers: The history of sequencing DNA
James M. Heather & Benjamin Chain
Genomics, 107(1):1–8, 2015.
- Continuous base identification for single-molecule nanopore DNA sequencing
James Clarke, Hai-Chen Wu, Lakmal Jayasinghe, Alpesh Patel1, Stuart Reid & Hagan Bayley
Nature Nanotechnology, 4(4):265–270, 2009.
- On genomic repeats and reproducibility
Can Firtina & Can Alkan
Bioinformatics, 32(15):2243–2247 2016.
- Convolutional neural networks for classification of alignments of non-coding RNA sequences
Genta Aoki & Yasubumi Sakakibara
Bioinformatics, 34, i237–i244, 2018.
- Predicting the impact of non-coding variants on DNA methylation
Haoyang Zeng & David K. Gifford
Nucleic Acids Res., 45(11):e99 2017.
- Predicting CpG methylation levels by integrating Infinium HumanMethylation450 BeadChip array data
Shicai Fan, Kang Huang, Rizi Ai, Mengchi Wang & Wei Wang
Genomics, 107:132–137 2016.
- LeNup: learning nucleosome positioning from DNA sequences with improved convolutional neural networks
Juhua Zhang, Wenbo Peng & Lei Wang
Bioinformatics, 34(10):1705–1712, 2018.
- Predicting DNA methylation status using word composition
Lingyi Lu, Kao Lin, Ziliang Qian, Haipeng Li, Yudong Cai & Yixue Li
J. Biomedical Science and Engineering, 3:672–676, 2010.
- A Deep Learning Approach for the Classification of Neuronal Cell Types
Alessio P. Buccino, Torbjørn V. Ness, Gaute T. Einevoll, Gert Cauwenberghs & Philipp D. Häfliger
Conf Proc IEEE Eng Med Biol Soc., 999–1002, 2018.
- MaGIC: a machine learning tool set and web application for monoallelic gene inference from chromatin
Svetlana Vinogradova, Sachit D. Saksena, Henry N. Ward, Sébastien Vigneau & Alexander A. Gimelbrant
BMC Bioinformatics, 20:106 2019.