
Midterm exam, 機器學習, Fall 2020. Open book but no calculators/cell phones allowed. Answers may include
𝑒2,

√
2, etc. but simplify when possible.
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Normal Distribution MLE

Your Name:

Problem 1.
Suppose
1. we have some observed data X (a set of real numbers {𝑥1, …, 𝑥𝑛}
2. We assume the data are random samples generated by a normal distribution of unknown mean 𝜇.

Question 1a
What is the maximum likelihood estimator for the 𝜇?

Solution: The arithmetic mean, 𝜇 = ̂𝑥 ≝ Σ𝑖𝑥𝑖/𝑛.

Question 1b
Given 𝜇 = 0, what is the maximum likelihood estimator for 𝜎2?

Give the mathematical derivation for your answers:

Solution:
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Normal Distribution MLE

MLE of Normal Mean
We need to maximize the likelihood with respect to 𝜇. The easiest way is to take the derivative of the
log likelihood with respect to 𝜇 and solve for its zero value. For variety, I show a different way.

arg max
𝜇

𝑛
∏
𝑖=1

1
𝜎

√
2𝜋

exp (−(𝑥𝑖 − 𝜇)2

𝜎2 ))

= arg max
𝜇

𝑛
∏
𝑖=1

exp (−(𝑥𝑖 − 𝜇)2

𝜎2 )

= arg max
𝜇

exp (−
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝜎2 )

= arg max
𝜇

𝑛
∑
𝑖=1

−(𝑥𝑖 − 𝜇)2

𝜎2 exp function is monotonically increasing

= arg min
𝜇

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2 = arg min
𝜇

(
𝑛

∑
𝑖=1

𝑥2
𝑖 −

𝑛
∑
𝑖=1

2𝑥𝑖𝜇 +
𝑛

∑
𝑖=1

𝜇2))

= arg min
𝜇

(
𝑛

∑
𝑖=1

𝜇2 −
𝑛

∑
𝑖=1

2𝜇𝑥𝑖) = arg min
𝜇

(𝑛𝜇2 − (
𝑛

∑
𝑖=1

𝑥𝑖)2𝜇)

= arg min
𝜇

(𝑛𝜇2 − 𝑛 ̂𝑥2𝜇) = arg min
𝜇

(𝜇2 − ̂𝑥2𝜇 + ̂𝑥2) added constant ̂𝑥2

= arg min
𝜇

(𝜇 − ̂𝑥)2 = ̂𝑥 ✓
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Normal Distribution MLE

Solution:

MLE of Normal Variance
Method 1: treating the log likelihood as a function of 𝜎

The likelihood is:
𝑛

∏
𝑖=1

1
𝜎

√
2𝜋

exp(−(𝑥𝑖 − 0)2

2𝜎2 )

It is convenient to work with the log likelihood, which has the same maximum as the likelihood.

max
𝜎

(
𝑛

∑
𝑖=1

(−(𝑥𝑖 − 0)2

2𝜎2 − lg(𝜎) − lg(
√

2𝜋)))

= max
𝜎

( −1
2𝜎2

𝑛
∑
𝑖=1

(𝑥𝑖 − 0)2 − 𝑛 lg(𝜎) − 𝑛 lg(
√

2𝜋))

= max
𝜎

(
− ∑𝑖(𝑥

2
𝑖 )

2𝜎2 − 𝑛 lg(𝜎)) log likelihood(σ)

Let 𝑆2 denote ∑𝑖 𝑥2
𝑖 . Take derivative and solve for the value of 𝜎 which makes it equal to zero.

find 𝜎 ∶ 𝑆2
𝜎3 − 𝑛

𝜎
= 0 derivative 𝑑

𝑑𝜎
of log likelihood(𝜎)

𝑆2
𝜎2 − 𝑛 = 0 ⇒ 　

𝑆2
𝜎2 = 𝑛 ⇒ 　𝜎2 = 𝑆2

𝑛
✓

Method 2: treating the log likelihood as a function of 𝜎2

In this method, I find it more clear to use a plain (not squared) variable to denote 𝜎2, so let 𝑦 ≔ 𝜎2.

max
𝑦

(
𝑛

∑
𝑖=1

−(𝑥𝑖 − 0)2

2𝑦
− lg(√𝑦) − lg(

√
2𝜋)) = max

𝑦
(

− ∑𝑖(𝑥
2
𝑖 )

2𝑛𝑦
− lg(√𝑦)) log likelihood(𝑦)

Again, let 𝑆2 denote ∑𝑖 𝑥2
𝑖 . Take derivative and solve for the value of 𝑦 which makes it equal to zero.

find 𝑦 ∶ 𝑆2𝑛
2𝑦2 − 1

2𝑦
= 0 derivative 𝑑

𝑑𝑦
of log likelihood(𝑦)

𝑆2𝑛
2𝑦

− 1
2 = 0𝑦 ⇒ 　𝑆2𝑛 − 𝑦 = 0 ⇒ 　𝑦 = 𝑆2

𝑛
⇒ 𝜎2 = 𝑆2

𝑛
✓
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Mean & Variance

Your Name:

Problem 2.
Let 𝑣 be a random variable defined by these values and probabilities.

𝑣 probability
2 0.4
3 0.3
4 0.2
5 0.1

Let 𝑉 (𝑛) = 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑛 be the sum of 𝑛 independent samples of 𝑣.

Question 2
Derive the mean and standard deviation of 𝑉 (𝑛).

Solution: First we manually compute the mean and variance of a single sample 𝑣. Then we use “the
expectation of a sum of 𝑓(𝑥𝑖) is the sum of the expectation of 𝑓(𝑥𝑖)” property to extend that result to
𝑉 (𝑛). Let 𝜇𝑖 and 𝜎2

𝑖 denote the mean and variance of a single sample 𝑣𝑖.

mean (𝑣𝑖) ≕ 𝜇𝑖 ≝ 　 E[𝑣] = 0.4 ⋅ 2 + 0.3 ⋅ 3 + 0.2 ⋅ 4 + 0.1 ⋅ 5 = 3

variance (𝑣𝑖) ≕ 𝜎2
𝑖 ≝ E[(𝑣𝑖 − 𝜇𝑖)2] = 0.4 ⋅(2-3)2 + 0.3 ⋅(3-3)2 + 0.2 ⋅(4-3)2 + 0.1 ⋅(5-3)2 = 1

mean 𝑉 (𝑛) ≕ 𝜇𝑛 ≝ E [
𝑛

∑
𝑖=1

𝑣𝑖] =
𝑛

∑
𝑖=1

E[𝑣] =
𝑛

∑
𝑖=1

𝜇𝑖 = 𝑛𝜇𝑖 = 3𝑛

variance 𝑉 (𝑛) ≕ 𝜎2
𝑛 ≝ 　E [

𝑛
∑
𝑖=1

(𝑣𝑖 − 𝜇𝑖)2] =
𝑛

∑
𝑖=1

[E[(𝑣𝑖 − 𝜇𝑖)2]] = 𝑛𝜎2
𝑖 = 𝑛

Std Dev 𝑉 (𝑛) ≝ 　√𝜎2
𝑛 =

√
𝑛
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Which Poisson

Your Name:

Problem 3.
The Poisson distribution has parameter 𝜆 ≧ 0 , defining a probability distribution over the non-negative
integers (0, 1, …) as follows:

Pois(𝑘; 𝜆) ≝ 　𝑃 [𝑘] = 𝜆𝑘

𝑘! exp(𝜆)
,　𝑘 ∈ ℕ0

This problem involves inference from data generated by one of two Poisson distributions: Pois(𝜆1) or
Pois(𝜆2). The following experiment is done.
1. 𝜆 is set to {𝜆1, 𝜆2} with probability 𝑚1 and 𝑚2 = 1 − 𝑚1.
2. A random sample 𝑦 is drawn from Pois(𝜆)

Question 3a
What is the posterior probability P[𝜆 = 𝜆1|𝑦 = 𝑘]?

Solution:

P[𝜆 = 𝜆1|𝑦 = 𝑘] = P[𝜆 = 𝜆1]P[𝑦|𝜆 = 𝜆1]
P[𝑦 = 𝑘]

=
𝑚1

𝜆𝑦
1

𝑦! exp(𝜆1)

𝑚1
𝜆𝑦

1

𝑦! exp(𝜆1)
+ 𝑚2

𝜆𝑦
2

𝑦! exp(𝜆2)

=
𝑚1

𝜆𝑦
1

exp(𝜆1)

𝑚1
𝜆𝑦

1

exp(𝜆1)
+ 𝑚2

𝜆𝑦
2

exp(𝜆2)

= 1

1 + 𝑚2

𝑚1
( 𝜆2

𝜆1
)

𝑦

exp(𝜆1 − 𝜆2)

Or equivalently,

Posterior odds 𝜆1 ∶ 𝜆2 = 𝑚1𝜆𝑦
2 exp(𝜆1) ∶ 𝑚2𝜆𝑦

1 exp(𝜆2)

Question 3b:
What kind of prior is this? Is it conjugate? Why or why not?

Solution: The prior on 𝜆 is a simple 2-value distribution 𝜆 = 𝜆1 or 𝜆 = 𝜆2 with odds 𝑚1 ∶ 𝑚2. Could
also be considered a very simple mixture model weighted by 𝑚1 ∶ 𝑚2. The components being the trivial
constant probability distributions: with probability 100%, 𝜆 = 𝜆1 or 𝜆 = 𝜆2 respectively.
The posterior is indeed conjugate as it has the same form (2-value distribution 𝜆 = 𝜆1 or 𝜆 = 𝜆2) but
with weights: 𝑚1𝜆𝑘

2 exp(𝜆1) ∶ 𝑚2𝜆𝑘
1 exp(𝜆2)

Note that the definition in this problem also defines a predictive distribution over 𝑘, and this distribution
is a mixture model of two poisson distributions. After observing 𝑘 = 𝑦, and updated posterior predictive
is still a mixture model of the same two poisson distributions (but with different weights).
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card deck entropy

Your Name:

Problem 4.
A standard poker deck has 52 cards. 13 each of: ♠ ♣ ♥ ♦ . The entropy of a single card drawn at random
is ≈ 5.7 bits of information. You cannot see the card, but I can.
Question 4a
If I told you the card is black (i.e. ’ ♠ ’ or ’ ♣ ’); how much entropy would remain? (give numerical answer

and reason)

Solution: The card is equally likely to be black or not, so the answer to that question gives us one bit
of information. Therefore the remaining entropy lg(52) − 1 ≈ 4.7.

Question 4b
If I then told you the card was a spade ’ ♠ ’, how much entropy would remain then? (give numerical answer

and reason)

Solution: Given the card is black, again the card is equally likely to be ’ ♠ ’ or not, so the answer to
that question gives us one bit of information. Therefore the remaining entropy after the second answer
is lg(52) − 1 − 1 ≈ 3.7.

Question 4c
Two cards are drawn from a fresh deck of cards. Let 𝑆1, 𝑆2 denote the first and second cards respectively.

What is the mutual information I(𝑆1, 𝑆2) (answer can include lg symbol).

Solution: I(𝑆1, 𝑆2) = H(𝑆2) − H(𝑆2|𝑆1) = lg(52) − lg(51)
Since H(𝑆2|𝑆1) is the entropy over 51 equally likely cards.
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Naïve Bayes Classifier

Your Name:

Problem 5. Consider a classification problem with two features 𝐹1 ∈ {0, 1, 2}, 𝐹2 ∈ {0, 1, 2, 3}, Assume
we know the two classes occur with equal probability: P[𝐶 = A] = P[𝐶 = B] = 0.5 (so you do not need to
estimate P[𝐶 = A], just take it as given to be 0.5).

Training Data
F1 F2 Class
2 3 A
0 0 A
2 2 A
2 0 A
2 0 B
2 0 B
1 0 B
2 0 B

Test Data P[C=A|F1,F2]:P[C=B|F1,F2] Using Prior:
F1 F2 MLE Jeffreys Laplace
2 3
1 1
0 3
1 0
0 0
1 3
0 2
0 1

The above table gives the P[F|C] probabilities for each feature and class.

Question 5
Compute the probability a Naïve Bayes classifier would assign to P[𝐶 = A], using maximum estimation,
Jeffrey’s priors or Laplace priors respectively when estimating probabilities involving feature values. You
may report the answer in terms of odds, so for example, if the P[𝐶 = A] = 1

3 , you can report that as 1:2
(hint: it is easier to work with odds).
Given the Naïve Bayes assumption and that we know P[𝐶 = A] = P[𝐶 = B], the most convenient way to
compute the posterior odds uses the following relationships.

P[𝐶 = A|𝐹1, 𝐹2] ∶ P[𝐶 = B|𝐹1, 𝐹2] = P[𝐹1|𝐶 = A] ∶ P[𝐹2|𝐶 = B]

So first I would tally value counts for F1, and F2 in each class, then add in “pseudocounts” as appropriate
for the given prior. Worksheet for intermediate calculations.

Feature F1 Feature F2 Class
Value 0 1 2 0 1 2 3

1 0 3 2 0 1 1 A
counts 0 1 3 4 0 0 0 B

“counts” 1.5 0.5 3.5 2.5 0.5 1.5 1.5 A
Jeffreys 0.5 1.5 3.5 4.5 0.5 0.5 0.5 B

2×counts 3 1 7 5 1 3 3 A
Jeffreys 1 3 7 9 1 1 1 B

2 1 4 3 1 2 2 A
Laplace 1 2 4 5 1 1 1 B

1 3 4 3 1 1 3 A
TRUE 4 3 1 2 2 2 2 B
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Naïve Bayes Classifier

Solution:
Test Values P[C=A|F1,F2]:P[C=B|F1,F2] Using Prior:
F1 F2 MLE Jeffreys Laplace
2 3 3 ∶ 0 = ∞ 3 ∶ 1 (75%) 2 ∶ 1 (67%)

1 1 0 ∶ 0 = 𝑁𝑎𝑁 1 ∶ 3 (25%) 1 ∶ 2 (33%)

0 3 1 ∶ 0 = ∞ 9 ∶ 1 (90%) 4 ∶ 1 (80%)

1 0 0 ∶ 4 = 0 5 ∶ 27 (16%) 3 ∶ 10 (23%)

0 0 2 ∶ 0 = ∞ 5 ∶ 3 (62%) 6 ∶ 5 (55%)

1 3 0 ∶ 0 = 𝑁𝑎𝑁 1 ∶ 1 (50%) 1 ∶ 1 (50%)

0 2 1 ∶ 0 = ∞ 9 ∶ 1 (90%) 4 ∶ 1 (80%)

0 1 0 ∶ 0 = ∞ 3 ∶ 1 (75%) 2 ∶ 1 (67%)
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Beta Mixture Shape

Your Name:

Problem 6.

A B C

D E F

G H I
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Beta Mixture Shape

Question 6
What parameter values in the table on the previous path match which plot in the table above? Fill in the
“Label” column and use the “Comment” column and/or space at bottom to explain your answers.

ID Distribution Label
(A–I) Comment

1 0.8 Beta(9, 9) + 0.2 Beta(9, 0.1) H main component near 0.5, another one at extreme rate=1

2 Beta(0.5, 0.5) E Jeffrey Prior, symmetric with weight at extremes

3 0.5 Beta(3, 6) + 0.5 Beta(6, 3) F symmetric sum of two bell shapes, centered on 1
3 and 2

3

4 Beta(2, 3) I bell shaped somewhat favoring rate < 0.5

5 0.5 Beta(20, 20) + 0.5 Beta(20, 1) C mixture of rate close to 0.5 or very near 1

6 0.3 Beta(3, 2) + 0.7 Beta(0.2, 1) B mixture of sharpish on near 0 and bell on 3⁄5

7 Beta(0.2, 9) A Extreme favoring of rate near zero

8 0.5 Beta(0.5, 5) + 0.5 Beta(10, 2) D Extreme towards 1 mixed with rounded on 5⁄6

9 0.8 Beta(9, 9) + 0.2 Beta(0.2, 0.2) G Symmetric. Strong fair bell mixed with very sharp at extremes

Most of the plots above are unique enough to be easy to match to their parameters. The most similar ones
are perhaps, C, G & H. But G is symmetric, while the other two are not. The component of H near rate=1
is much sharper than that of C, so that component should have a small value for 𝛼; and in fact it is 0.1 for
H, compared to 1 for C.
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