Midterm exam, 機器學習, Fall 2020. Open book but no calculators/cell phones allowed. Answers may include e^2 , $\sqrt{2}$, etc. but simplify when possible.

Exam written by Paul Horton ©2020.

Your Name: _____

Problem 1.

Suppose

1. we have some observed data X (a set of real numbers $\{x_1, ..., x_n\}$ 2. We assume the data are random samples generated by a normal distribution of unknown mean μ .

Question 1a What is the maximum likelihood estimator for the μ ?

Question 1b Given $\mu = 0$, what is the maximum likelihood estimator for σ^2 ?

Give the mathematical derivation for your answers:

Your Name: _____

Problem 2.

Let v be a random variable defined by these values and probabilities.

v	probability
2	0.4
3	0.3
4	0.2
5	0.1

Let $V(n)=v_1+v_2+\dots+v_n$ be the sum of n independent samples of v.

Question 2

Derive the mean and standard deviation of V(n).

Your Name: _____

Problem 3.

The Poisson distribution has parameter $\lambda\geqq 0$, defining a probability distribution over the non-negative integers $(0,1,\ldots)$ as follows:

$$\operatorname{Pois}(k;\lambda) \quad \stackrel{\text{\tiny def}}{=} \quad P[k] = \frac{\lambda^k}{k! \exp(\lambda)}, \quad k \in \mathbb{N}_0$$

This problem involves inference from data generated by one of two Poisson distributions: $Pois(\lambda_1)$ or $Pois(\lambda_2)$. The following experiment is done.

1. λ is set to $\{\lambda_1, \lambda_2\}$ with probability m_1 and $m_2 = 1 - m_1$.

2. A random sample y is drawn from $\operatorname{Pois}(\lambda)$

Question 3a

What is the posterior probability $\mathbf{P}[\lambda=\lambda_1|y=k]?$

Question 3b: What kind of prior is this? Is it conjugate? Why or why not? Your Name: _

Problem 4.

A standard poker deck has 52 cards. 13 each of: $\bullet \bullet \bullet \bullet$. The entropy of a single card drawn at random is ≈ 5.7 bits of information. You cannot see the card, but I can.

Question 4a

If I told you the card is black (i.e. ' \bullet ' or ' \bullet '); how much entropy would remain? (give numerical answer and reason)

Question 4b

If I then told you the card was a spade '• ', how much entropy would remain then? (give numerical answer and reason)

Question 4c

Two cards are drawn from a fresh deck of cards. Let S_1, S_2 denote the first and second cards respectively. What is the mutual information $I(S_1, S_2)$ (answer can include lg symbol). Your Name: _

Problem 5. Consider a classification problem with two features $F1 \in \{0, 1, 2\}$, $F2 \in \{0, 1, 2, 3\}$, Assume we know the two classes occur with equal probability: P[C = A] = P[C = B] = 0.5 (so you do not need to estimate P[C = A], just take it as given to be 0.5).

Training Data		Te	est Dat	$a \mid P[C=A]$	P[C=A F1,F2]:P[C=B F1,F2] Using Prior:			
F1	F2	Class	FI	F2	MLE	Jeffreys	Laplace	
2	3	А	2	3				
0	0	А	1	1				
2	2	А	0	3				
2	0	А	1	0				
2	0	В	0	0				
2	0	В	1	3				
1	0	В	0	2				
2	0	В	0	1	-+			

The above table gives the P[F|C] probabilities for each feature and class.

Question 5

Compute the probability a Naïve Bayes classifier would assign to P[C = A], using maximum estimation, Jeffrey's priors or Laplace priors respectively when estimating probabilities involving feature values. You may report the answer in terms of odds, so for example, if the $P[C = A] = \frac{1}{3}$, you can report that as 1:2 (hint: it is easier to work with odds).

You may find the following worksheet helpful.

	Feature F1			Feature F2				Class
Value	0	1	2	0	1	2	3	
								A
counts								B
"counts"								A
Jeffreys								B
$2 \times \text{counts}$								A
Jeffreys								B
								A
Laplace								B

Question 6

What parameter values in the table on the previous path match which plot in the table above? Fill in the "Label" column and use the "Comment" column and/or space at bottom to explain your answers.

ID	Distribution	Label (A–I)	Comment
1	$0.8{\rm Beta}(9,9) + 0.2{\rm Beta}(9,0.1)$		
2	Beta(0.5, 0.5)		
3	$0.5\operatorname{Beta}(3,6) + 0.5\operatorname{Beta}(6,3)$		
4	Beta(2,3)		
5	$0.5{\rm Beta}(20,20) + 0.5{\rm Beta}(20,1)$		
6	$0.3{\rm Beta}(3,2) + 0.7{\rm Beta}(0.2,1)$		
7	Beta(0.2,9)		
8	$0.5{\rm Beta}(0.5,5)+0.5{\rm Beta}(10,2)$		
9	$0.8 \operatorname{Beta}(9,9) + 0.2 \operatorname{Beta}(0.2, 0.2)$		