Midterm exam，機器學習，Fall 2020．Open book but no calculators／cell phones allowed．Answers may include $e^{2}, \sqrt{2}$ ，etc．but simplify when possible．

Your Name:

Problem 1.

Suppose

1. we have some observed data X (a set of real numbers $\left\{x_{1}, \ldots, x_{n}\right\}$
2. We assume the data are random samples generated by a normal distribution of unknown mean μ.

Question 1a

What is the maximum likelihood estimator for the μ ?

Question 1b

Given $\mu=0$, what is the maximum likelihood estimator for σ^{2} ?

Give the mathematical derivation for your answers:

Your Name:

Problem 2.

Let v be a random variable defined by these values and probabilities.

v	probability
2	0.4
3	0.3
4	0.2
5	0.1

Let $V(n)=v_{1}+v_{2}+\cdots+v_{n}$ be the sum of n independent samples of v.

Question 2

Derive the mean and standard deviation of $V(n)$.

Your Name:

Problem 3.

The Poisson distribution has parameter $\lambda \geqq 0$, defining a probability distribution over the non-negative integers $(0,1, \ldots)$ as follows:

$$
\operatorname{Pois}(k ; \lambda) \quad \stackrel{\text { def }}{=} \quad P[k]=\frac{\lambda^{k}}{k!\exp (\lambda)}, \quad k \in \mathbb{N}_{0}
$$

This problem involves inference from data generated by one of two Poisson distributions: Pois $\left(\lambda_{1}\right)$ or $\operatorname{Pois}\left(\lambda_{2}\right)$. The following experiment is done.

1. λ is set to $\left\{\lambda_{1}, \lambda_{2}\right\}$ with probability m_{1} and $m_{2}=1-m_{1}$.
2. A random sample y is drawn from $\operatorname{Pois}(\lambda)$

Question 3a
What is the posterior probability $\mathrm{P}\left[\lambda=\lambda_{1} \mid y=k\right]$?

Question 3b:

What kind of prior is this? Is it conjugate? Why or why not?

Your Name:

Problem 4.

A standard poker deck has 52 cards. 13 each of: \downarrow • . The entropy of a single card drawn at random is ≈ 5.7 bits of information. You cannot see the card, but I can.
Question 4a
If I told you the card is black (i.e. ' ' or '*'); how much entropy would remain? (give numerical answer and reason)

Question 4b

If I then told you the card was a spade ' ', how much entropy would remain then? (give numerical answer and reason)

Question 4c

Two cards are drawn from a fresh deck of cards. Let S_{1}, S_{2} denote the first and second cards respectively. What is the mutual information $\mathrm{I}\left(S_{1}, S_{2}\right)$ (answer can include lg symbol).

Your Name: \qquad

Problem 5. Consider a classification problem with two features $F 1 \in\{0,1,2\}, F 2 \in\{0,1,2,3\}$, Assume we know the two classes occur with equal probability: $\mathrm{P}[C=\mathrm{A}]=\mathrm{P}[C=\mathrm{B}]=0.5$ (so you do not need to estimate $\mathrm{P}[C=\mathrm{A}]$, just take it as given to be 0.5).
Training Data

F1	F2	Class
2	3	A
0	0	A
2	2	A
2	0	A
2	0	B
2	0	B
1	0	B
2	0	B

Test Data $\quad \mathrm{P}[\mathrm{C}=\mathrm{A} \mid \mathrm{F} 1, \mathrm{~F} 2]: \mathrm{P}[\mathrm{C}=\mathrm{B} \mid \mathrm{F} 1, \mathrm{~F} 2]$ Using Prior:

F1	F2	MLE	Jeffreys	Laplace
2	3			
1	1			
0	3			
1	0			
0	0			
1	3			
0	2			
0	1			

The above table gives the $\mathrm{P}[\mathrm{F} \mid \mathrm{C}]$ probabilities for each feature and class.

Question 5
Compute the probability a Naïve Bayes classifier would assign to $\mathrm{P}[C=\mathrm{A}]$, using maximum estimation, Jeffrey's priors or Laplace priors respectively when estimating probabilities involving feature values. You may report the answer in terms of odds, so for example, if the $\mathrm{P}[C=\mathrm{A}]=\frac{1}{3}$, you can report that as 1:2 (hint: it is easier to work with odds).
You may find the following worksheet helpful.

	Feature F1			Feature F2				Class
Value	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
counts								B
"counts"							A	
Jeffreys								B
$2 \times$ counts							A	
Jeffreys								B
							A	
Laplace							B	

Your Name: \qquad

Problem 6.

A

D

H

C

F

I

Question 6

What parameter values in the table on the previous path match which plot in the table above? Fill in the "Label" column and use the "Comment" column and/or space at bottom to explain your answers.

ID	Distribution	Label $(\mathrm{A}-\mathrm{I})$	Comment
1	$0.8 \operatorname{Beta}(9,9)+0.2 \operatorname{Beta}(9,0.1)$		
2	$\operatorname{Beta}(0.5,0.5)$		
3	$0.5 \operatorname{Beta}(3,6)+0.5 \operatorname{Beta}(6,3)$		
4	$\operatorname{Beta}(2,3)$		
5	$0.5 \operatorname{Beta}(20,20)+0.5 \operatorname{Beta}(20,1)$		
6	$0.3 \operatorname{Beta}(3,2)+0.7 \operatorname{Beta}(0.2,1)$		
7	$\operatorname{Beta}(0.2,9)$		
8	$0.5 \operatorname{Beta}(0.5,5)+0.5 \operatorname{Beta}(10,2)$		
9	$0.8 \operatorname{Beta}(9,9)+0.2 \operatorname{Beta}(0.2,0.2)$		

