
Final exam, 機器學習, Fall 2020. Closed book, no calculators/cell phones allowed. Answers may include 𝑒2,√
2, etc. but simplify when possible.

Exam written by Paul Horton ©2020.



Bivariate Normal Contour Plots

Your Name:

Problem 1.
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The above contour plots represent bivariate normal distributions 𝒩(𝜇𝑋, 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, 𝜌), over (X,Y); with X
plotted on the horizontal axis, and Y on the vertical axis. Six different plots are presented. For all six
(𝜇𝑋, 𝜇𝑌) = (0, 0) and 𝜎𝑥 = 1. For each distribution: 𝜎𝑌 ∈ {0.7, 1, 1.5}, 𝜌 ∈ {0.0, 0.2, 0.5, 0.9}.

ID 𝜎𝑌 𝜌 Comment

A 1.0 0.5 𝜎𝑌 = 𝜎𝑋; shape is intermediate

B 0.7 0.5 𝜎𝑌 is small like in D; considering 𝜎𝑌 < 𝜎𝑋, shape is intermediate

C 1.5 0.5 𝜎𝑌 is large like in E; considering 𝜎𝑌 > 𝜎𝑋, shape is intermediate;

D 0.7 0.0 long axis parallel to x-axis so 𝜌 = 0; 𝜎𝑌 < 𝜎𝑋 and smaller than 𝜎s in other plots

E 1.5 0.9 very narrow shape, so 𝜌 = 0.9; 𝜎𝑌 large, like in plot C

F 1.0 0.2 𝜎𝑌 = 𝜎𝑋; shape is similar to, but not quite, a cirle

For this problem, it helps to recall that the marginal distribution of a multivariate normal is simply the
parameters of the remaining (not marginalized) variables. So the relative size of 𝜎𝑋 and 𝜎𝑌 can more or less
by determined by projecting a contour onto the X and Y axes.
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Conditional Independence

Your Name:

Problem 2.
Question 2a Give (and justify) the simplest example you can find of a joint probability distribution over
variables {𝐴, 𝐵, 𝐶}. Such that 𝐴 and 𝐵 are pairwise independent but 𝐴��⟂⟂ 𝐵 |𝐶.

Solution: Many answers are possible. The classic example is 𝐴, 𝐵, and 𝐶 are three boolean variables
with 𝐶 equal to the exclusive or of 𝐴 and 𝐵, 𝐶 = 𝐴 ⊕ 𝐵, so that given any two of {𝐴, 𝐵, 𝐶}, the third

is completely determined, and in particular P[𝐴=1|𝐵, 𝐶] = {0 if 𝐵 = 𝐶
1 otherwise

Suppose the priors of 𝐴 and 𝐵 are independent Bernoulli distribubions P[𝐴]〜Bernoulli(0.5) and
P[𝐵]〜Bernoulli(0.5), where Bernoulli(0.5) is a fair coin-flip with value 0 or 1.

By this definition P[𝐴=0|𝐶=𝑐] = {P[𝐵 = 0] if 𝑐 = 0
P[𝐵 = 1] if 𝑐 = 1

But P[𝐵 = 0] = P[𝐵 = 1] = 0.5 so P[𝐴|𝐶]〜Bernoulli(0.5) which clearly differs from the deterministic
relationship of P[𝐴|𝐵, 𝐶]. Thus 𝐴��⟂⟂ 𝐵 |𝐶✓.

Question 2b Give (and justify) the simplest example you can find of a joint probability distribution over
variables {𝐴, 𝐵, 𝐶}. Such that 𝐴 ⟂⟂ 𝐵 |𝐶, but 𝐴 and 𝐵 are not pairwise independent.

Solution: Many answers are possible. A simple one is if 𝐴 and 𝐵 are exact copies of 𝐶. These
relationships are deterministic, so

P[𝐴=𝑐|𝐵] = P[𝐴=𝑐] = 1 (1)
P[𝐴≠𝑐|𝐵] = P[𝐴≠𝑐] = 0

Clearly 𝐴 ⟂⟂ 𝐵 |𝐶. Suppose the prior distribution of 𝐶 is 𝑃 [𝐶]〜Bernoulli(0.5). By marginalizing 𝐶 out
of 𝑃 [𝐴, 𝐶] we obtain:

P[𝐴=0] = P[𝑐=0] P[𝐴=0|𝑐=0] + P[𝑐=1] P[𝐴=0|𝑐=1] = 1
2 (1) + 1

2 (0) = 1
2

P[𝐴=1] = P[𝑐=0] P[𝐴=1|𝑐=0] + P[𝑐=1] P[𝐴=1|𝑐=1] = 1
2 (0) + 1

2 (1) = 1
2

So the marginal probability P[𝐴] is also P[𝐴]〜Bernoulli(0.5). The above math may be overkill though,
as one could simply reason that since 𝐴 is a perfect copy of 𝐶; P[𝐶]〜Bernoulli(0.5) immediately implies
P[𝐴]〜Bernoulli(0.5).
Comparing this result to equation 1 above, P[𝐴] ≠ P[𝐴|𝐵], thus 𝐴 and 𝐵 are not pairwise independent.✓
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X,Y Classifier

Your Name:

Problem 3.
Assume we know of two linear functions of 𝑥:

𝐹1(𝑥) = 𝑚𝑥 + 𝑏1; 𝐹2(𝑥) = 𝑚𝑥 + 𝑏2

with known values of 𝑚, 𝑏1, and 𝑏2, with 𝑏1 < 𝑏2.
Further suppose we have 𝑛 points of data in the form of 𝑥, 𝑦 points (e.g. the point (x=0,y=0) or (x=2,y=3),
etc.) where some of the points were generated by: 𝑦𝑖 = 𝐹1(𝑥𝑖) + 𝒩(0, 𝜎2

1) and some of the points were
generated by 𝑦𝑖 = 𝐹2(𝑥𝑖) + 𝒩(0, 𝜎2

2). We are not told which points are from which function, but we are told
that the ratio of points from 𝐹1 to those from 𝐹2 is 𝜎1 ∶ 𝜎2, i.e. the number of points from 𝐹1 is 𝑛𝜎1

𝜎1+𝜎2
.

Question: in terms of parameters given above (𝑚, 𝑏1, 𝑏2, 𝜎1, 𝜎2) give an optimal decision rule for classifying
a point (𝑥, 𝑦) as belonging to 𝐹1 or 𝐹2. Where optimal means fewest expected mistakes.

Solution: Define 𝑑 = 𝑦 − 𝑚𝑥. Note that according to the problem formulation above:

P[𝑦|𝐹1, 𝑥] = P[𝑑|𝐹1] = 1
𝜎1 exp( (𝑑−𝑏1)2

2𝜎2
1

)

and similarly for 𝐹2.
At the decision boundary, 𝑃 [𝐹 |𝑥, 𝑦] should be the same (= 0.5) for 𝐹1 and 𝐹2.
So we should solve for:

1 = P[𝐹1|𝑥, 𝑦]
P[𝐹2|𝑥, 𝑦]

=
P[𝐹1] P[𝑥, 𝑦|𝐹1] 1

P[𝑥,𝑦]

P[𝐹2] P[𝑥, 𝑦|𝐹2] 1
P[𝑥,𝑦]

= P[𝐹1] P[𝑥, 𝑦|𝐹1]
P[𝐹2] P[𝑥, 𝑦|𝐹2]

= 𝜎1 P[𝑥, 𝑦|𝐹1]
𝜎2 P[𝑥, 𝑦|𝐹2]

= 𝜎1 P[𝑥] P[𝑦|𝐹1, 𝑥]
𝜎2 P[𝑥] P[𝑦|𝐹2, 𝑥]

𝜎1
1

𝜎1 exp( (𝑑−𝑏1)2

2𝜎2
1

)

𝜎2
1

𝜎2 exp( (𝑑−𝑏2)2

2𝜎2
2

)

=
exp( (𝑑−𝑏2)2

2𝜎2
2

)

exp( (𝑑−𝑏1)2

2𝜎2
1

)

⟹ (𝑑 − 𝑏1)2

𝜎2
1

= (𝑑 − 𝑏2)2

𝜎2
2

⟹ |𝑑 − 𝑏1|
𝜎1

= |𝑑 − 𝑏2|
𝜎2

⟹ 𝜎2|𝑑 − 𝑏1| = 𝜎1|𝑑 − 𝑏2|

The decision rule is predict 𝐹1 if 𝜎2|𝑑 − 𝑏1| < 𝜎1|𝑑 − 𝑏2|, otherwise predict 𝐹2. If 𝑏1 ≦ 𝑑 ≦ 𝑏2, that rule
corresponds to predict 𝐹1 if

𝜎2|𝑑 − 𝑏1| < 𝜎1|𝑑 − 𝑏2| ⟹ 𝜎2(𝑑 − 𝑏1) < 𝜎1(𝑏2 − 𝑑) ⟹ (𝜎1 + 𝜎2)𝑑 < 𝜎1𝑏2 + 𝜎2𝑏1

⟹ 𝑑 < 𝜎1𝑏2 + 𝜎2𝑏1
𝜎1 + 𝜎2

= 𝑏1 + 𝜎1(𝑏2 − 𝑏1)
𝜎1 + 𝜎2

Note that if 𝜎1 ≠ 𝜎2, then there will be another decision boundary. For example if 𝜎1 > 𝜎2, there will
be a point 𝑑 > 𝑏2 such that

𝜎1(𝑑 − 𝑏2) = 𝜎2(𝑑 − 𝑏1) ⟹ 𝑑(𝜎1 − 𝜎2) = 𝜎1𝑏2 − 𝜎2𝑏1 ⟹ 𝑑 = 𝜎1𝑏2 − 𝜎2𝑏1
𝜎1 − 𝜎2

⟹ 𝜎1𝑏2 − 𝜎2(𝑏2 + (𝑏1 − 𝑏2))
𝜎1 − 𝜎2

⟹ 𝑑 = 𝑏2 + 𝜎2(𝑏2 − 𝑏1)
𝜎1 − 𝜎2

So when 𝜎1 > 𝜎2, the decision rule is: Predict 𝐹2 if 𝑏1 + 𝜎1(𝑏2−𝑏1)
𝜎1+𝜎2

< 𝑑 < 𝑏2 + 𝜎2(𝑏2−𝑏1)
𝜎1−𝜎2

, otherwise predict
𝐹1 (of course < can be replaced with ≦, as this only affects the prediction for when the probability of
𝐹1 versus 𝐹2 is 50%-50%).
By symmetry, when 𝜎1 < 𝜎2, Predict 𝐹1 if 𝑏1 − 𝜎1(𝑏2−𝑏1)

𝜎2−𝜎1
< 𝑑 < 𝑏1 + 𝜎1(𝑏2−𝑏1)

𝜎1+𝜎2
otherwise predict 𝐹2.
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parameterization and priors

Your Name:

Problem 4.
Background:
Recall two methods we discussed for deciding priors; Laplace and Jeffreys. The Laplace method places
a uniform distribution over the parameter to be estimated, while the more complicated Jeffreys method
guarantees equivalent priors regardless of the problem parameterization.
The most common way to parameterize a ’coin-flipping’ problem uses 𝑝: the probability of ’success’ (e.g. the
probability of heads for a coin). For this purposes of this question, I call this the “𝑝-parameterization”. The
likelihood function is:

ℒ(𝑝; 𝑛0, 𝑛1) = ( 𝑛
𝑛0

)(1 − 𝑝)𝑛0𝑝𝑛1 (2)

Where 𝑛 = 𝑛0 + 𝑛1 is the total number of data samples, and 𝑛0 and 𝑛1 denote the number of failures and
successes respectively.
We can use a beta distribution to represent the prior probability distribution of 𝑝; convenient because it is
conjugate to the likelihood function. Recall the standard beta distribution is defined as:

Beta(𝑝; 𝛼, 𝛽) ≝ 𝑝𝛼−1(1 − 𝑝)𝛽−1

B(𝛼, 𝛽)
, where B(𝛼, 𝛽) ≝ Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)

Question 4a Under the Jeffreys prior, what is the prior probability of 𝑝 = 0.5 divided by that of 𝑝 = 0.75?
In other words, using the notation pd(𝑝 = 𝑥) to represent the probability density of 𝑝 = 𝑥 for some
𝑥, 0 ≦ 𝑥 ≦ 1, what is pd(𝑝 = 0.5)/pd(𝑝 = 0.75)?

Solution: Under the 𝑝-parameterization, the Jeffrey’s prior is

Beta(𝑝; 0.5，0.5) ≝ 𝑝0.5−1(1 − 𝑝)0.5−1

B(0.5, 0.5)
∝ 1

√𝑝(1 − 𝑝)

pd(𝑝 = 1
2 )

pd(𝑝 = 3
4 )

=
√ 3

4 (1 − 3
4 )

√ 1
2 (1 − 1

2 )
=

√ 3
16

√ 1
4

=

√
3

4
1
2

=
√

3
2

Question continued on next page.

Exam, solutions by Paul Horton ©2020



parameterization and priors

Problem 4. (continued)
An alternative parameterization of uses the ratio of the probability of success to failure: 𝑟 = 𝑝

1 − 𝑝
. Here I

will denote this as the “𝑟-parameterization”.

Question 4b Write the likelihood function in terms of 𝑟.

Solution:

𝑟 = 𝑝
1 − 𝑝

⟹ (1 − 𝑝)𝑟 = 𝑝 ⟹ 𝑟 = 𝑝 + 𝑟𝑝 ⟹ 𝑝 = 𝑟
1 + 𝑟

, (1 − 𝑝) = 1
1 + 𝑟

Substituting these into equation 2 we obtain

ℒ(𝑛0, 𝑛1; 𝑟) = ( 𝑛
𝑛0

) ( 1
1 + 𝑟

)
𝑛0

( 𝑟
1 + 𝑟

)
𝑛1

= ( 𝑛
𝑛0

) 𝑟𝑛1

(1 + 𝑟)𝑛

Question 4c Assuming we use Jeffreys method to compute the prior for the 𝑟-parameterization. What
should pd(𝑟 = 1)/pd(𝑟 = 3) be?

Solution: Since 𝑟 = 1 and 𝑟 = 3, correspond to 𝑝 = 0.5 and 𝑝 = 0.75 respectively, it is tempting to
say the answer should be the same as pd(𝑝=0.5)

pd(𝑝=0.75) =
√

3
2 . However we need to take into consideration the

non-linear change of variables from 𝑝 to 𝑟. Remember that while the range of 𝑟 is 𝑟 ∈ (0, ∞), half of
the range of 𝑝 ∈ [0, 0.5] is packed into 𝑟 ∈ [0, 1]. Informally, 𝑝 is densely packed into small values 𝑟, but
sparsely packed for large values of 𝑟.
More precisely, since 𝑟 = 𝑝

1−𝑝 ⟹ 𝑝 = 𝑟
𝑟+1 = 1 − 1

𝑟+1

𝜕𝑝
𝜕𝑟

= d
d𝑟

(1 − 1
𝑟 + 1

) = 1
(𝑟 + 1)2

Combining,
pd(𝑟 = 1)
pd(𝑟 = 3)

= pd(𝑝 = 0.5)
pd(𝑝 = 0.75)

𝜕𝑝
𝜕𝑟 ∣

𝑟=1
𝜕𝑝
𝜕𝑟 ∣

𝑟=3

=
√

3
2

(3 + 1)2

(1 + 1)2 =
√

3
2

42

22 = 2
√

3
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Bayes Net Fill Nodes

Your Name:

Problem 5.

C B F E

G A

D

The graph above is a Bayesian network with nodes {A,B,C,D,E,F,G}, but, except A, the node labels are
hidden.
The graph structure implies the following relationships:

Pairwise dependencies: A,B; A,D; A,G; B,E; D,E

Conditional independencies: A,B|F; A,D|F; A,D|G; D,F|G; D,E|F

Conditional dependencies: A,B|C; A,B|D; A,E|F; C,D|B

(at least, the above list not complete).

Question: What labeling of the nodes is consistent with those independence relationships?
In the graph at top, fill in node names.

Solution: One solution is shown above. Some hints regarding how to solve it. Notice the graph is a
tree, so each pair of node has only one path joining it and most of these are simple chains. Pairwise
dependencies are on the same chain, conditional independencies are from breaking the chain, so for
example from (A ��⟂⟂ B), (A ��⟂⟂ D) we can deduce that A,B and A,D are on the same chain, while
(A ⟂⟂ B | F), (A ⟂⟂ D | F) implies F blocks chains A→…F→…→ B, A→…F→…D, so F should be
placed somewhere upstream of A, with B and D further upstream. Conditional dependencies, on the
other hand, can be parents (or ancestors) conditioned on a child (descendent) in a “collider” structure
○→○←○. A simple example is (A ��⟂⟂ E|F), where A and E are parents of F. A more complicated
one is (C ��⟂⟂ D | B), which (when given the answer at least) can be understood by first noticing
((C ��⟂⟂ F | B)) since C and F are parents of B, and then realizing that, as a descendent of F, D holds
information about F, so in general (C ��⟂⟂ D | B).

Exam, solutions by Paul Horton ©2020


