Final exam，機器學習，Fall 2020．Closed book，no calculators／cell phones allowed．Answers may include e^{2} ， $\sqrt{2}$ ，etc．but simplify when possible．

Your Name: \qquad

Problem 1.

A
B

E

D

C

F

The above contour plots represent bivariate normal distributions $\mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$, over (X,Y); with X plotted on the horizontal axis, and Y on the vertical axis. Six different plots are presented. For all six $\left(\mu_{X}, \mu_{Y}\right)=(0,0)$ and $\sigma_{x}=1$. For each distribution: $\sigma_{Y} \in\{0.7,1,1.5\}, \rho \in\{0.0,0.2,0.5,0.9\}$.

ID	σ_{Y}	ρ	Comment
A			
B			
C			
D			
E			
F			

Your Name:

Problem 2.

Question 2a Give (and justify) the simplest example you can find of a joint probability distribution over variables $\{A, B, C\}$. Such that A and B are pairwise independent but $A \not \nVdash B \mid C$.

Question 2b Give (and justify) the simplest example you can find of a joint probability distribution over variables $\{A, B, C\}$. Such that $A \Perp B \mid C$, but A and B are not pairwise independent.

Your Name:

Problem 3.

Assume we know of two linear functions of x :

$$
F_{1}(x)=m x+b_{1} ; \quad F_{2}(x)=m x+b_{2}
$$

with known values of m, b_{1}, and b_{2}, with $b_{1}<b_{2}$.
Further suppose we have n points of data in the form of x, y points (e.g. the point $(\mathrm{x}=0, \mathrm{y}=0)$ or $(\mathrm{x}=2, \mathrm{y}=3)$, etc.) where some of the points were generated by: $y_{i}=F_{1}\left(x_{i}\right)+\mathcal{N}\left(0, \sigma_{1}^{2}\right)$ and some of the points were generated by $y_{i}=F_{2}\left(x_{i}\right)+\mathcal{N}\left(0, \sigma_{2}^{2}\right)$. We are not told which points are from which function, but we are told that the ratio of points from F_{1} to those from F_{2} is $\sigma_{1}: \sigma_{2}$, i.e. the number of points from F_{1} is $\frac{n \sigma_{1}}{\sigma_{1}+\sigma_{2}}$.

Question: in terms of parameters given above $\left(m, b_{1}, b_{2}, \sigma_{1}, \sigma_{2}\right)$ give an optimal decision rule for classifying a point (x, y) as belonging to F_{1} or F_{2}. Where optimal means fewest expected mistakes.

Your Name:

Problem 4.

Background:

Recall two methods we discussed for deciding priors; Laplace and Jeffreys. The Laplace method places a uniform distribution over the parameter to be estimated, while the more complicated Jeffreys method guarantees equivalent priors regardless of the problem parameterization.
The most common way to parameterize a 'coin-flipping' problem uses p : the probability of 'success' (e.g. the probability of heads for a coin). For this purposes of this question, I call this the " p-parameterization". The likelihood function is:

$$
\begin{equation*}
\mathcal{L}\left(p ; n_{0}, n_{1}\right)=\binom{n}{n_{0}}(1-p)^{n_{0}} p^{n_{1}} \tag{2}
\end{equation*}
$$

Where $n=n_{0}+n_{1}$ is the total number of data samples, and n_{0} and n_{1} denote the number of failures and successes respectively.
We can use a beta distribution to represent the prior probability distribution of p; convenient because it is conjugate to the likelihood function. Recall the standard beta distribution is defined as:

$$
\operatorname{Beta}(p ; \alpha, \beta) \stackrel{\text { def }}{=} \frac{p^{\alpha-1}(1-p)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}, \quad \text { where } \mathrm{B}(\alpha, \beta) \stackrel{\text { def }}{=} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

Question 4a Under the Jeffreys prior, what is the prior probability of $p=0.5$ divided by that of $p=0.75$? In other words, using the notation $\operatorname{pd}(p=x)$ to represent the probability density of $p=x$ for some $x, 0 \leqq x \leqq 1$, what is $\operatorname{pd}(p=0.5) / \operatorname{pd}(p=0.75) ?$

Question continued on next page.

Problem 4. (continued)
An alternative parameterization of uses the ratio of the probability of success to failure: $r=\frac{p}{1-p}$. Here I will denote this as the " r-parameterization".

Question 4b Write the likelihood function in terms of r.

Question 4c Assuming we use Jeffreys method to compute the prior for the r-parameterization. What should $\operatorname{pd}(r=1) / \operatorname{pd}(r=3)$ be?

Your Name: \qquad

Problem 5.

The graph above is a Bayesian network with nodes $\{A, B, C, D, E, F, G\}$, but, except A, the node labels are hidden.
The graph structure implies the following relationships:

Pairwise dependencies: A,B;A,D;A,G;B,E;D,E
Conditional independencies: A,B|F;A,D|F;A,D|G;D,F|G;D,E|F
Conditional dependencies: A,B|C;A,B|D;A,E|F;C,D|B
(at least, the above list not complete).

Question: What labeling of the nodes is consistent with those independence relationships?
In the graph at top, fill in node names.

