Midterm exam supplement. Closed book and calculators not allowed. Answers may include e^{2}, $\sqrt{ }$, etc. but simplfy when possible.

Problem 1.

Consider four classifiers simple classifiers:
Logistic Regression (LR), k Nearest Neighbors (k NN), Naïve Bayes (NB), and Decision Tree (DT).

Which classifers fit the following statements?
(example of how to answer)
1- Is a classifier. LR, NN, NB, DT

1a Recursively partitions the data. \qquad

1b Has linear decision boundaries. \qquad

1c Is relatively robust to "the curse of dimensionality".

1d If given infinite data will converge to optimal classifier.

Problem 2.

Let $\mathrm{Y}(x)$ be a mixture model of two normal distributions $\mathrm{N}_{1}\left(\mu_{1}, \sigma_{1}^{2}\right)$, and $\mathrm{N}_{2}\left(\mu_{2}, \sigma_{2}^{2}\right)$. With mixture model coefficients (weights) of w_{1} and w_{2} respectively $\left(w_{1}+w_{2}=1\right)$.

2a Write down the probability density function for $\mathrm{Y}(x)$. (If you don't remember perfectly, write down the most important part)

2b What is the derivative of the natural logarithm of $\mathrm{Y}(\mathrm{x})$ with respect to μ_{1} ? In other words, what is?

$$
\frac{\partial}{\partial \mu_{1}} \ln \mathrm{Y}(x)
$$

Problem 3.

Consider a random variable X following a Bernoulli distribution over $\{a, b\}$ with an unknown probability of a, which we denote as P_{a}. We assume a uniform distribution over P_{a}. In other words: $\mathrm{p}\left[\mathrm{P}_{\mathrm{a}}\right]=1, \mathrm{P}_{\mathrm{a}} \in[0,1]$. Sampling from X we observe the $\mathbf{S}=$ baa. For convenience we use $\mathrm{F}, \mathrm{F}_{a}, \mathrm{~F}_{b}$ to denote the length of this sequence and the number of a's and b's it contains.
So for $\mathbf{S}: \mathrm{F}=3, \mathrm{~F}_{a}=2, \mathrm{~F}_{b}=1$.
3a. What is likelihood of $\mathrm{P} a$ given \mathbf{S}, i.e. $\mathrm{P}\left[\mathbf{S} \mid \mathrm{P}_{\mathrm{a}}\right]$?

3b. Recalling that we are using a uniform prior for P_{a}, what is the posterior probability distribution of $\mathrm{P} a$ after seeing \mathbf{S} ?

3c. Given we have seen \mathbf{S}, what is the probability that the next letter will be a?

For reference, Beta integral:

$$
\int_{0}^{1} \mathrm{dP}_{\mathrm{a}} \mathrm{P}_{\mathrm{a}}^{\mathrm{F}_{a}}\left(1-\mathrm{P}_{\mathrm{a}}\right)^{\mathrm{F}_{b}}=\frac{\Gamma\left(\mathrm{F}_{a}+1\right) \Gamma\left(\mathrm{F}_{b}+1\right)}{\Gamma\left(\mathrm{F}_{a}+\mathrm{F}_{b}+2\right)} \quad=\frac{\mathrm{F}_{a}!\mathrm{F}_{b}!}{\mathrm{F}_{a}+\mathrm{F}_{b}+1!}, \text { for non-negative integers } \mathrm{F}_{a}, \mathrm{~F}_{b}
$$

Problem 4.

Let $\mathrm{Y} \sim \mathrm{U}(0,1)$ denote the uniformly distribution over $[0,1]$, with probability density function:

$$
\mathrm{P}[y=x]=d x ; \quad 0 \leq x \leq 1
$$

Further let M_{k} denote the random variable obtained by taking the minimum of k independent samples from Y.

So M_{2} is the minimum of two samples, etc.

4a. What is the probability density function of M_{2} ?

4b. More generally, what is the probability density function of M_{k} ?

Problem 5.

An basket contains k balls, of which b are black. One ball is drawn from the basket and then replaced. This is done n times.

Let n_{b} denote the number of times the ball drawn is black.
Question:

In terms of the variables k, b and n;

5a. What is the probability distribution of n_{b} ?
$5 b$. What is the mean, variance, and standard deviation of this probability distribution?

5 c . What is the mean, variance, and standard deviation of n_{b} for the specific cases of: $\mathrm{n}=5, \mathrm{~b}=2, \mathrm{k}=10$; and $\mathrm{n}=225, \mathrm{~b}=2, \mathrm{k}=10$?

Problem 6.

There are five baskets, $u_{0} \ldots u_{4}$, each contains 4 balls. Of the four balls they contain, u_{0} has no black balls, u_{1} has one black ball, \ldots, finally u_{4} has only black balls (4/4).
First, a basket u is picked at random (with $u_{0} \ldots u_{4}$ all having an equal chance).
Then 3 balls are randomly drawn from basket u, one at a time, replacing the ball each time. In other words 3 balls are sampled from u with replacement.
Let b denote the number of the 3 drawn balls which are black.

Question:
In the case where $b=2$, what is the probability that the next ball drawn will be black?
Show your work.

