Midterm exam supplement. Closed book and calculators not allowed. Answers may include $e^{2}$, $\sqrt{ }$, etc. but simplfy when possible.

## Problem 1.

Consider four classifiers simple classifiers:
Logistic Regression (LR), $k$ Nearest Neighbors ( $k$ NN), Naïve Bayes (NB),
and Decision Tree (DT).
Which classifers fit the following statements?
(example of how to answer)
1- Is a classifier. LR, NN, NB, DT

Solution: 1a Recursively partitions the data. DT
Decision tree recursively partitions the data.

1b Has linear decision boundaries. LR
Logistic Regression has linear decision boundaries.

1c Is relatively robust to "the curse of dimensionality". NB,LR,DT
Naïve Bayes and Logistic Regression use strong assumptions (of conditional independence and linearity respectively) to lower their complexity and making them somewhat less prone to overfitting. Typical Decision Tree induction algorithms include feature selection and control of model complexity (stopping criterion used when extending the tree).

1d If given infinite data will converge to optimal classifier. $k N N$, DT
In principle, $k$-Nearest Neighbor and Decision Tree are both flexible enough to utilize infinite data to approximate any joint distribution.
$k$ NN's main weakness is probability estimation in a sparse feature space, but infinite data would solve that. For $k=1, k \mathrm{NN}$ is still not optimal, but with infinite data approaches optimality with increasing $k$.
The main weakness of decision tree induction is reduction in effective data size due to repeated partitioning at lower levels of the tree, but infinite data would solve that, in principle allowing a huge decision tree to be induced to approximate any joint distribution of features and class.

## Problem 2.

Let $\mathrm{Y}(x)$ be a mixture model of two normal distributions $\mathrm{N}_{1}\left(\mu_{1}, \sigma_{1}^{2}\right)$, and $\mathrm{N}_{2}\left(\mu_{2}, \sigma_{2}^{2}\right)$. With mixture model coefficients (weights) of $w_{1}$ and $w_{2}$ respectively $\left(w_{1}+w_{2}=1\right)$.

## Solution:

2a Write down the probability density function for $\mathrm{Y}(x)$.

$$
\mathrm{Y}(x)=\frac{w_{1} \exp \left(\frac{-\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right)}{\sqrt{2 \pi} \sigma_{1}}+\frac{w_{2} \exp \left(\frac{-\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right)}{\sqrt{2 \pi} \sigma_{2}}
$$

2b What is the derivative of the natural logarithm of $\mathrm{Y}(\mathrm{x})$ with respect to $\mu_{1}$ ?

Recall the general relationships:

$$
\frac{\partial}{\partial \mu_{1}} \ln \left(\mathrm{Y}\left(\mu_{1}, \mu_{2}, \ldots\right)\right)=\frac{\frac{\partial}{\partial \mu_{1}} \mathrm{Y}\left(\mu_{1}, \mu_{2}, \ldots\right)}{\mathrm{Y}\left(\mu_{1}, \mu_{2}, \ldots\right)}
$$

We want to compute $\frac{\partial}{\partial \mu_{1}} Y\left(\mu_{1}, \mu_{2}, \ldots\right)$, which will depend only on the term:

$$
\begin{aligned}
\frac{\partial}{\partial \mu_{1}} \mathrm{Y}\left(\mu_{1}, \mu_{2}, \ldots\right) & =w_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} \frac{\partial}{\partial \mu_{1}} \exp \left(\frac{-\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right) \\
& =w_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} \frac{2\left(x-\mu_{1}\right)}{2 \sigma_{1}^{2}} \exp \left(\frac{-\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right) \\
& =w_{1} \frac{x-\mu_{1}}{\sqrt{2 \pi} \sigma_{1}^{3}} \exp \left(\frac{-\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right)
\end{aligned}
$$

Combining,

$$
\begin{aligned}
\frac{\partial}{\partial \mu_{1}} \ln \left(\mathrm{Y}\left(\mu_{1}, \mu_{2}, \ldots\right)\right) & =\frac{w_{1} \frac{x-\mu_{1}}{\sqrt{2 \pi \sigma_{1}^{3}} \exp \left(\frac{-\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right)}}{\frac{w_{1} \exp \left(\frac{-\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right)}{\sqrt{2 \pi} \sigma_{1}}+\frac{w_{2} \exp \left(\frac{-\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right)}{\sqrt{2 \pi} \sigma_{2}}} \\
& =\frac{w_{1} \frac{z_{1}}{\sigma_{1}^{2}} \exp \left(\frac{-\left(z_{1}^{2}\right)}{2}\right)}{\frac{w_{1} \exp \left(\frac{-\left(z_{1}^{2}\right)}{2}\right)}{\sigma_{1}}+\frac{w_{2} \exp \left(\frac{-\left(z_{2}^{2}\right)}{2}\right)}{\sigma_{2}}} \\
& =\frac{w_{1} \frac{z_{1}}{\sigma_{1} \sigma_{1}} \exp \left(\frac{-\left(z_{1}^{2}\right)}{2}\right)}{w_{1} \exp \left(\frac{-\left(z_{1}^{2}\right)}{2}\right)} z_{i} \stackrel{w_{2} \exp \left(\frac{-\left(z_{2}^{2}\right)}{2}\right)}{\sigma_{1}} \cdot \frac{\frac{\sigma_{1}}{\sigma_{1}}}{\frac{\sigma_{1}}{\sigma_{1}}} \\
& =\frac{\frac{x-\mu_{i}}{\sigma_{1}}}{\frac{z_{1}}{\sigma_{1}} \exp \left(\frac{-\left(z_{1}^{2}\right)}{2}\right)} \operatorname{exp(\frac {-(z_{1}^{2})}{2})+\frac {w_{2}\sigma _{1}\operatorname {exp}(\frac {-(z_{2}^{2})}{2})}{w_{1}\sigma _{2}}} \cdot \frac{\exp \left(\frac{z_{1}^{2}}{2}\right)}{\exp \left(\frac{z_{1}^{2}}{2}\right)} \\
& =\frac{\frac{z_{1}}{\sigma_{1}}}{1+\frac{w_{2} \sigma_{1}}{w_{1} \sigma_{2}} \exp \left(\frac{z_{1}^{2}}{2}-\frac{z_{2}^{2}}{2}\right)} \\
& =\frac{\frac{z_{1}}{\sigma_{1}}}{1+\frac{w_{2}}{w_{1}} \frac{p\left(x \mid \mathrm{N}_{2}\right)}{p\left(x \mid \mathrm{N}_{1}\right)}}
\end{aligned}
$$

## Problem 3.

Consider a random variable X following a Bernoulli distribution over $\{\mathrm{a}, \mathrm{b}\}$ with an unknown probability of a , which we denote as $\mathrm{P}_{\mathrm{a}}$. We assume a uniform distribution over $\mathrm{P}_{\mathrm{a}}$. In other words: $\mathrm{p}\left[\mathrm{P}_{\mathrm{a}}\right]=1, \mathrm{P}_{\mathrm{a}} \in[0,1]$. Sampling from X we observe the $\mathbf{S}=$ baa. For convenience we use $\mathrm{F}, \mathrm{F}_{a}, \mathrm{~F}_{b}$ to denote the length of this sequence and the number of a's and b's it contains.
So for $\mathbf{S}: ~ \mathrm{~F}=3, \mathrm{~F}_{a}=2, \mathrm{~F}_{b}=1$.

For reference, Beta integral:

$$
\int_{0}^{1} \mathrm{dP}_{\mathrm{a}} \mathrm{P}_{\mathrm{a}}^{\mathrm{F}_{a}}\left(1-\mathrm{P}_{\mathrm{a}}\right)^{\mathrm{F}_{b}}=\frac{\Gamma\left(\mathrm{F}_{a}+1\right) \Gamma\left(\mathrm{F}_{b}+1\right)}{\Gamma\left(\mathrm{F}_{a}+\mathrm{F}_{b}+2\right)} \quad=\frac{\mathrm{F}_{a}!\mathrm{F}_{b}!}{\mathrm{F}_{a}+\mathrm{F}_{b}+1!}, \text { for non-negative integers } \mathrm{F}_{a}, \mathrm{~F}_{b}
$$

## Solution:

3a. What is likelihood of $\mathrm{P}_{\mathrm{a}}$ given $\mathbf{S}$, i.e. $\mathrm{P}\left[\mathbf{S} \mid \mathrm{P}_{\mathrm{a}}\right]$ ?

$$
\mathrm{P}\left[\mathbf{S} \mid \mathrm{P}_{\mathrm{a}}\right]=\mathrm{P}_{\mathrm{a}}^{\mathrm{F}_{a}}\left(1-\mathrm{P}_{\mathrm{a}}\right)^{\mathrm{F}_{b}}=\mathrm{P}_{\mathrm{a}}^{2}\left(1-\mathrm{P}_{\mathrm{a}}\right)
$$

3b. Recalling that we are using a uniform prior for $\mathrm{P}_{\mathrm{a}}$, what is the posterior probability distribution of $\mathrm{P}_{\mathrm{a}}$ after seeing $\mathbf{S}$ ?

In general posterior $=$ prior $\times$ likelihood.
Due to uniform priors, the posterior is proportional to the likelihood, so all that remains is to find a valid probability density proportional to this likelihoo, which turns out to be a beta distribution:

$$
\text { beta } \operatorname{dist}\left(\mathrm{F}_{a}+1, \mathrm{~F}_{b}+1\right)=\frac{\Gamma\left(\mathrm{F}_{a}+1+\mathrm{F}_{b}+1\right)}{\Gamma\left(\mathrm{F}_{a}+1\right) \Gamma\left(\mathrm{F}_{b}+1\right)} \mathrm{P}_{\mathrm{a}} \mathrm{~F}_{a}\left(1-\mathrm{P}_{\mathrm{a}}\right)^{\mathrm{F}_{b}} \propto \mathrm{P}_{\mathrm{a}} \mathrm{~F}_{a}\left(1-\mathrm{P}_{\mathrm{a}}\right)^{\mathrm{F}_{b}}
$$

So the posterior is beta $\operatorname{dist}\left(\mathrm{F}_{a}+1, \mathrm{~F}_{b}+1\right)$. In our specific case substituting $\mathrm{F}_{a}=2, \mathrm{~F}_{b}=1$

$$
\text { normalization factor }=\frac{\Gamma\left(\mathrm{F}_{a}+1+\mathrm{F}_{b}+1\right)}{\Gamma\left(\mathrm{F}_{a}+1\right) \Gamma\left(\mathrm{F}_{b}+1\right)}=\frac{\Gamma(5)}{\Gamma(3) \Gamma(2)}=\frac{4!}{2!1!}=\frac{24}{2}=12
$$

So,

$$
\text { probability density } p\left(\mathrm{P}_{\mathrm{a}} \mid \mathbf{S}\right)=12 \mathrm{P}_{\mathrm{a}}^{2}\left(1-\mathrm{P}_{\mathrm{a}}\right)
$$

3c. Given we have seen $\mathbf{S}$, what is the probability that the next letter will be a?
Using $\mathbf{S a}$ to denote the $\mathbf{S}$ followed by an a,

$$
\begin{aligned}
\int_{0}^{1} p\left(\mathbf{S a} \mid \mathbf{S}, \mathrm{P}_{\mathrm{a}}\right) p\left(\mathrm{P}_{\mathrm{a}} \mid \mathbf{S}\right) \mathrm{dP}_{\mathrm{a}} & =\int_{0}^{1} \mathrm{P}_{\mathrm{a}} \frac{p\left(\mathrm{P}_{\mathrm{a}}\right) p\left(\mathbf{S} \mid \mathrm{P}_{\mathrm{a}}\right)}{p(\mathbf{S})} \mathrm{dP}_{\mathrm{a}} \quad \begin{array}{l}
p\left(\mathbf{S a} \mid \mathbf{S}, \mathrm{P}_{\mathrm{a}}\right)=\mathrm{P}_{\mathrm{a}} ; \\
\text { Bayes Law on } p\left(\mathrm{P}_{\mathrm{a}} \mid \mathbf{S}\right)
\end{array} \\
& =\frac{\int_{0}^{1} \mathrm{P}_{\mathrm{a}} p\left(\mathbf{S} \mid \mathrm{P}_{\mathrm{a}}\right) \mathrm{dP}_{\mathrm{a}}}{p(\mathbf{S}) \quad \begin{array}{l}
\text { by uniform prior, } p\left(\mathrm{P}_{\mathrm{a}}\right)=1 ; \\
p(\mathbf{S}) \text { independent of } \mathrm{P}_{\mathrm{a}}
\end{array}} \\
& =\frac{\int_{0}^{1} \mathrm{P}_{\mathrm{a}} \mathrm{P}_{\mathrm{a}}^{2}\left(1-\mathrm{P}_{\mathrm{a}}\right) \mathrm{dP}_{\mathrm{a}}}{\int_{0}^{1} \mathrm{P}\left(\mathbf{S} \mid \mathrm{P}_{\mathrm{a}}\right) \mathrm{dP}_{\mathrm{a}}}=\frac{\int_{0}^{1} \mathrm{P}_{\mathrm{a}}^{3}\left(1-\mathrm{P}_{\mathrm{a}}\right) \mathrm{dP}_{\mathrm{a}}}{\int_{0}^{1} \mathrm{P}_{\mathrm{a}}^{2}\left(1-\mathrm{P}_{\mathrm{a}}\right) \mathrm{dP}_{\mathrm{a}}} \\
& =\frac{3!1!/ 5!}{2!1!/ 4!}=\frac{3!}{2!} \cdot \frac{4!}{5!}=\frac{3}{5}=0.6
\end{aligned}
$$

## Problem 4.

Let $\mathrm{Y} \sim \mathrm{U}(0,1)$ denote the uniformly distribution over $[0,1]$, with probability density function:

$$
\mathrm{P}[y=x]=d x ; \quad 0 \leq x \leq 1
$$

Further let $\mathrm{M}_{k}$ denote the random variable obtained by taking the minimum of $k$ independent samples from Y.

So $M_{2}$ is the minimum of two samples, etc.

4a. What is the probability density function of $\mathrm{M}_{2}$ ?
4 b . More generally, what is the probability density function of $\mathrm{M}_{k}$ ?

## Solution:

This problem nicely illustrates how using Bayes law can help one solve many problems. If $\mathrm{P}[\mathrm{A} \mid \mathrm{B}]$ stumps you, try working out $\mathrm{P}[\mathrm{B} \mid \mathrm{A}]$.

First, I assert that the probability density $\mathrm{M}_{k}$ is independent of which sample happened to be the smallest. In other words, $\mathrm{M}_{k} \stackrel{\text { def }}{=} \min \left(y_{1} \ldots y_{k}\right)$ is independent of $\arg \min \left(y_{1} \ldots y_{k}\right)$.
This seems intuitive to me by symmetry, but we can use Bayes Law to make it more so.
Letting $y_{m}$ denote the smallest sample;

$$
\begin{aligned}
p\left(y_{m}=x \mid m=i\right) & =\frac{p\left(y_{m}=x\right) \mathrm{P}\left[m=i \mid y_{m}=x\right]}{\mathrm{P}(m=i)} \\
& =p\left[y_{m}=x\right] \frac{\mathrm{P}\left[m=i \mid y_{m}=x\right]}{\mathrm{P}[m=i]}=p\left[y_{m}=x\right] \frac{1 / k}{1 / k}=p\left[y_{m}=x\right]
\end{aligned}
$$

Where lower case $p$ denotes probability density, and $\mathrm{P}\left[m=i \mid y_{m}=x\right]$ is the probability that the smallest sample was $i$, given that the smallest sample had a value of $x$.
This demonstrates that knowing which sample is the smallest does not affect the probability distribution of the value of the smallest. For simplicity let's assume the first sample is the smallest, so we now want to figure out $p\left[y_{1}=x \mid m=1\right]$.
Again, using Bayes law we can transform this into an easier question.

$$
p\left[y_{1}=x \mid m=1\right]=\frac{\mathrm{P}\left[m=1 \mid y_{1}=x\right] p\left[y_{1}=x\right]}{\mathrm{P}[m=1]}=\frac{\mathrm{P}\left[m=1 \mid y_{1}=x\right]}{1 / k}
$$

Where $p\left[y_{1}=x\right]=1$, because $\mathrm{Y} \sim \mathrm{U}(0,1)$.
$m=1$ when $\forall_{k>1} y_{k} \geq y_{1}$ - equivalent to $k-1$ flips, all coming up tails, of a coin with probability of heads $y_{1}$.
So $\mathrm{P}\left[m=1 \mid y_{1}=x\right]=\left(1-y_{1}\right)^{k-1}$.
Combining,

$$
p\left[y_{1}=x \mid m=1\right]=\frac{\mathrm{P}\left[m=1 \mid y_{1}=x\right]}{1 / k}=k\left(1-y_{1}\right)^{k-1}
$$

## Problem 5.

An basket contains $k$ balls, of which $b$ are black. One ball is drawn from the basket and then replaced. This is done $n$ times.

Let $n_{b}$ denote the number of times the ball drawn is black.
Question:

In terms of the variables $k, b$ and $n$;

Solution: 5a. What is the probability distribution of $n_{b}$ ?
Let $p$ denote the probability of drawing a black ball: $\frac{b}{k}$.

$$
n_{b} \sim \text { binomial dist. }(\mathrm{n}, \mathrm{p})=\binom{n}{n_{b}} p^{n_{b}}(1-p)^{n-n_{b}}
$$

5b. What is the mean, variance, and standard deviation of this probability distribution?
mean: $\mu=n p=n \frac{b}{k}$ variance: $\sigma^{2}=n \mathrm{E}\left[(\mathrm{B}-p)^{2}\right]$, where B is an indicator variable defined for a single draw as: $\mathrm{B}=1$ if the drawn ball is black and, $\mathrm{B}=0$ otherwise.

$$
\begin{array}{rlrl}
\mathrm{E}\left[(\mathrm{~B}-p)^{2}\right]=\mathrm{P}[\mathrm{~B}=0](0-p)^{2}+\mathrm{P}[\mathrm{~B}=1](1-p)^{2} & =(1-p)(0-p)^{2}+p(1-p)^{2} & =(1-p) p^{2}+p(1-p)^{2} \\
& =p(1-p)(p+(1-p)) & & =p(1-p)
\end{array}
$$

So variance is $\sigma^{2}=n p(1-p)=\mu(1-p)$ and standard deviation is $\sigma=\sqrt{\sigma^{2}}$.
5 c . What is the mean, variance, and standard deviation of $n_{b}$ for the specific cases of: $\mathrm{n}=5, \mathrm{~b}=2, \mathrm{k}=10$; and $\mathrm{n}=225, \mathrm{~b}=2, \mathrm{k}=10$ ?

| $n$ | $p$ | $\mu$ | $\sigma^{2}$ | $\sigma$ |
| ---: | ---: | :---: | :---: | :---: |
| 5 | 0.20 | $5 \cdot 0.2=1$ | $1 \cdot 0.8=0.8$ | $\sqrt{0.8} \approx 0.894$ |
| 225 | 0.20 | $225 \cdot 0.2=45$ | $45 \cdot 0.8=36$ | $\sqrt{36}=6$ |

## Problem 6.

There are five baskets, $u_{0} \ldots u_{4}$, each contains 4 balls. Of the four balls they contain, $u_{0}$ has no black balls, $u_{1}$ has one black ball, $\ldots$, finally $u_{4}$ has only black balls (4/4).
First, a basket $u$ is picked at random (with $u_{0} \ldots u_{4}$ all having an equal chance).
Then 3 balls are randomly drawn from basket $u$, one at a time, replacing the ball each time. In other words 3 balls are sampled from $u$ with replacement.
Let $b$ denote the number of the 3 drawn balls which are black.

Question:
In the case where $b=2$, what is the probability that the next ball drawn will be black?
Show your work.

Solution: First we observe that since both a black and a non-black ball have been drawn, we can eliminate $u_{0}$ and $u_{4}$ from consideration.

Next we note that the prior probability of picking each basket is uniform, so the posterior probability of the basket will be proportional to the likelihood.
The problem statement gives only the counts (two black and one non-black). I assert that assuming a particular sequence will not change the answer and slightly simplifies the likelihood. So let's assume our data is a particular sequence with two black balls, say (black, black, non-black). Given this data, the likelihood of a basket with probability $p$ is $p^{2}(1-p)$.
Computing this for the three baskets yields:

|  | $\mathrm{P}\left[\right.$ black $\left.\mid u_{i}\right]$ | $\mathrm{P}\left[\right.$ data $\left.\mid u_{i}\right]$ | $64 \mathrm{P}\left[\right.$ data $\left.\mid u_{i}\right]=20 \mathrm{P}\left[u_{i} \mid\right.$ data $]$ | $20 \mathrm{P}\left[u_{i} \mid\right.$ data $] 4 \mathrm{P}\left[\right.$ black $\left.\mid u_{i}\right]$ |
| :--- | :---: | :---: | :---: | :---: |
| basket $u_{i}$ | $p$ | $p^{2}(1-p)$ | $p^{2}(1-p) / 4^{3}$ |  |
| $u_{1}$ | $\frac{1}{4}$ | $\frac{1}{4}^{2} \frac{3}{4}$ | $1^{2} \cdot 3=3$ | $3 \cdot 1=3$ |
| $u_{2}$ | $\frac{2}{4}$ | $\frac{2}{4}^{2} \frac{2}{4}$ | $2^{2} \cdot 2=8$ | $8 \cdot 2=16$ |
| $u_{3}$ | $\frac{3}{4}$ | $\frac{3}{4}^{2} \frac{1}{4}$ | $3^{2} \cdot 1=9$ | $9 \cdot 3=27$ |
| relevant sums |  | $\frac{20}{64}$ | 20 | $80 \mathrm{P}[$ black $\mid$ data $]=46$ |

Answer: $\frac{46}{80}=\frac{23}{40}=0.575$
Check our work.

$$
64 \mathrm{P}\left[\text { data } \mid u_{i}\right]=20 \mathrm{P}\left[u_{i} \mid \text { data }\right] \Longrightarrow \frac{20}{64}=\frac{\mathrm{P}\left[\text { data } \mid u_{i}\right]}{\mathrm{P}\left[u_{i} \mid \text { data }\right]} \equiv \frac{\mathrm{P}[\text { data }]}{\mathrm{P}\left[u_{i}\right]}
$$

From the problem statement we know $\mathrm{P}\left[u_{i}\right]=\frac{1}{5}$,
so the above implies that $5 \mathrm{P}[$ data $]=\frac{20}{64} \Longrightarrow \mathrm{P}[$ data $]=\frac{4}{64}=\frac{1}{16}$.
Let's check. From the table above, we know $\sum_{u_{i}} \mathrm{P}\left[\right.$ data $\left.\mid u_{i}\right]=\frac{20}{64}$.
The joint probability $\mathrm{P}\left[\right.$ data, $\left.u_{i}\right] \equiv \mathrm{P}\left[u_{i}\right] \mathrm{P}\left[\right.$ data $\left.\mid u_{i}\right]$,
All $\mathrm{P}\left[u_{i}\right]$ terms are equal so,

$$
\mathrm{P}[\text { data }]=\sum_{u_{i}} \mathrm{P}\left[u_{i}\right] \mathrm{P}\left[\text { data } \mid u_{i}\right]=\sum_{u_{i}} \frac{1}{5} \mathrm{P}\left[\text { data } \mid u_{i}\right]=\frac{1}{5} \sum_{u_{i}} \mathrm{P}\left[\text { data } \mid u_{i}\right]=\frac{1}{5} \frac{20}{64}=\frac{4}{64}=\frac{1}{16} \checkmark
$$

