
Midterm exam supplement. Closed book and calculators not allowed. Answers may include 𝑒2, √ , etc. but
simplfy when possible.
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Classifiers Compared

Problem 1.
Consider four classifiers simple classifiers:
Logistic Regression (LR), 𝑘 Nearest Neighbors (𝑘NN), Naïve Bayes (NB),
and Decision Tree (DT).

Which classifers fit the following statements?

(example of how to answer)
1- Is a classifier. LR, NN, NB, DT

Solution: 1a Recursively partitions the data. DT
Decision tree recursively partitions the data.

1b Has linear decision boundaries. LR
Logistic Regression has linear decision boundaries.

1c Is relatively robust to “the curse of dimensionality”. NB,LR,DT
Naïve Bayes and Logistic Regression use strong assumptions (of conditional independence and linearity
respectively) to lower their complexity and making them somewhat less prone to overfitting. Typical
Decision Tree induction algorithms include feature selection and control of model complexity (stopping
criterion used when extending the tree).

1d If given infinite data will converge to optimal classifier. 𝑘NN, DT
In principle, 𝑘-Nearest Neighbor and Decision Tree are both flexible enough to utilize infinite data to
approximate any joint distribution.
𝑘NN’s main weakness is probability estimation in a sparse feature space, but infinite data would solve
that. For 𝑘 = 1, 𝑘NN is still not optimal, but with infinite data approaches optimality with increasing
𝑘.
The main weakness of decision tree induction is reduction in effective data size due to repeated parti-
tioning at lower levels of the tree, but infinite data would solve that, in principle allowing a huge decision
tree to be induced to approximate any joint distribution of features and class.
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Gaussian Mixture Model Derivative

Problem 2.
Let Y(𝑥) be a mixture model of two normal distributions N1(μ1, σ2

1 ), and N2(μ2, σ2
2 ). With mixture model

coefficients (weights) of 𝑤1 and 𝑤2 respectively
(𝑤1 + 𝑤2 = 1).

Solution:
2a Write down the probability density function for Y(𝑥).

Y(𝑥) =
𝑤1 𝑒𝑥𝑝 ( −(𝑥−μ1)2

2σ2
1

)
√

2π σ1
+

𝑤2 𝑒𝑥𝑝 ( −(𝑥−μ2)2

2σ2
2

)
√

2π σ2

2b What is the derivative of the natural logarithm of Y(x) with respect to μ1?

Recall the general relationships:

∂
∂μ1

𝑙𝑛(Y(μ1, μ2, …)) =
∂

∂μ1
Y(μ1, μ2, …)

Y(μ1, μ2, …)

We want to compute ∂
∂μ1

Y(μ1, μ2, …), which will depend only on the term:

∂
∂μ1

Y(μ1, μ2, …) = 𝑤1
1√

2π σ1

∂
∂μ1

𝑒𝑥𝑝 (−(𝑥 − μ1)2

2σ2
1

)

= 𝑤1
1√

2π σ1

2(𝑥 − μ1)
2σ2

1
𝑒𝑥𝑝 (−(𝑥 − μ1)2

2σ2
1

)

= 𝑤1
𝑥 − μ1√

2π σ3
1

𝑒𝑥𝑝 (−(𝑥 − μ1)2

2σ2
1

)
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Gaussian Mixture Model Derivative

Combining,

∂
∂μ1

𝑙𝑛(Y(μ1, μ2, …)) =
𝑤1

𝑥−μ1√
2π σ3

1
𝑒𝑥𝑝 ( −(𝑥−μ1)2

2σ2
1

)

𝑤1 𝑒𝑥𝑝( −(𝑥−μ1)2

2σ2
1

)
√

2π σ1
+

𝑤2 𝑒𝑥𝑝( −(𝑥−μ2)2

2σ2
2

)
√

2π σ2

=
𝑤1

𝑧1
σ2

1
𝑒𝑥𝑝 ( −(𝑧2

1 )
2 )

𝑤1 𝑒𝑥𝑝( −(𝑧2
1 )

2 )

σ1
+

𝑤2 𝑒𝑥𝑝( −(𝑧2
2 )

2 )

σ2

𝑧𝑖
def= 𝑥 − μ𝑖

σ𝑖

=
𝑤1

𝑧1
σ1σ1

𝑒𝑥𝑝 ( −(𝑧2
1 )

2 )

𝑤1 𝑒𝑥𝑝( −(𝑧2
1 )

2 )

σ1
+

𝑤2 𝑒𝑥𝑝( −(𝑧2
2 )

2 )

σ2

⋅
σ1
𝑤1
σ1
𝑤1

=
𝑧1
σ1

𝑒𝑥𝑝 ( −(𝑧2
1 )

2 )

𝑒𝑥𝑝 ( −(𝑧2
1 )

2 ) +
𝑤2σ1 𝑒𝑥𝑝( −(𝑧2

2 )
2 )

𝑤1σ2

⋅
𝑒𝑥𝑝 ( 𝑧2

1
2 )

𝑒𝑥𝑝 ( 𝑧2
1
2 )

=
𝑧1
σ1

1 + 𝑤2σ1
𝑤1σ2

𝑒𝑥𝑝 ( 𝑧2
1
2 − 𝑧2

2
2 )

=
𝑧1
σ1

1 + 𝑤2
𝑤1

𝑝(𝑥|N2)
𝑝(𝑥|N1)

𝑝(𝑥|N𝑖) ∝ 1
σ𝑖 𝑒𝑥𝑝(𝑧2

𝑖 /2)

Exam, solutions by Paul Horton ©2019.



Beta-Binomial

Problem 3.
Consider a random variable X following a Bernoulli distribution over {a,b} with an unknown probability of
a, which we denote as Pa. We assume a uniform distribution over Pa. In other words: p[Pa] = 1, Pa ∈ [0, 1].
Sampling from X we observe the S= baa. For convenience we use F, F𝑎, F𝑏 to denote the length of this
sequence and the number of a’s and b’s it contains.
So for S: F = 3, F𝑎 = 2, F𝑏 = 1.

For reference, Beta integral:

∫
1

0
dPa Pa

F𝑎(1−Pa)F𝑏 = Γ(F𝑎 + 1)Γ(F𝑏 + 1)
Γ(F𝑎 + F𝑏 + 2)

= F𝑎!F𝑏!
F𝑎 + F𝑏 + 1!

, for non-negative integers F𝑎, F𝑏

Solution:
3a. What is likelihood of Pa given S, i.e. P[S|Pa]?

P[S|Pa] = Pa
F𝑎(1 − Pa)F𝑏 = Pa

2(1 − Pa)

3b. Recalling that we are using a uniform prior for Pa, what is the posterior probability distribution of
Pa after seeing S?

In general posterior = prior ×likelihood.
Due to uniform priors, the posterior is proportional to the likelihood, so all that remains is to find a
valid probability density proportional to this likelihoo, which turns out to be a beta distribution:

beta dist(F𝑎 + 1, F𝑏 + 1) = Γ(F𝑎 + 1 + F𝑏 + 1)
Γ(F𝑎 + 1)Γ(F𝑏 + 1)

Pa
F𝑎(1 − Pa)F𝑏 ∝ Pa

F𝑎(1 − Pa)F𝑏

So the posterior is beta dist(F𝑎 + 1, F𝑏 + 1). In our specific case substituting F𝑎 = 2, F𝑏 = 1

normalization factor = Γ(F𝑎 + 1 + F𝑏 + 1)
Γ(F𝑎 + 1)Γ(F𝑏 + 1)

= Γ(5)
Γ(3)Γ(2)

= 4!
2!1!

= 24
2

= 12

So,
probability density 𝑝(Pa|S) = 12 Pa

2(1 − Pa)

3c. Given we have seen S, what is the probability that the next letter will be a?

Using Sa to denote the S followed by an a,

∫
1

0
𝑝(Sa|S, Pa) 𝑝(Pa|S) dPa = ∫

1

0
Pa

𝑝(Pa) 𝑝(S|Pa)
𝑝(S)

dPa

𝑝(Sa|S, Pa) = Pa;
Bayes Law on 𝑝(Pa|S)

=
∫1
0

Pa 𝑝(S|Pa) dPa

𝑝(S)
by uniform prior, 𝑝(Pa) = 1;
𝑝(S) independent of Pa

=
∫1
0

Pa Pa
2(1 − Pa) dPa

∫1
0

P(S|Pa)dPa

=
∫1
0

Pa
3(1 − Pa) dPa

∫1
0

Pa
2(1 − Pa) dPa

= 3!1!/5!
2!1!/4!

= 3!
2!

⋅ 4!
5!

= 3
5

= 0.6
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Minimum of Uniform Draws

Problem 4.
Let Y ∼ U(0, 1) denote the uniformly distribution over [0,1], with probability density function:

P[𝑦 = 𝑥] = 𝑑𝑥; 0 ≤ 𝑥 ≤ 1.

Further let M𝑘 denote the random variable obtained by taking the minimum of 𝑘 independent samples from
Y.
So M2 is the minimum of two samples, etc.

4a. What is the probability density function of M2?

4b. More generally, what is the probability density function of M𝑘?

Solution:

This problem nicely illustrates how using Bayes law can help one solve many problems. If P[A|B] stumps
you, try working out P[B|A].

First, I assert that the probability density M𝑘 is independent of which sample happened to be the
smallest. In other words, M𝑘

def= 𝑚𝑖𝑛(𝑦1 … 𝑦𝑘) is independent of 𝑎𝑟𝑔 𝑚𝑖𝑛(𝑦1 … 𝑦𝑘).
This seems intuitive to me by symmetry, but we can use Bayes Law to make it more so.
Letting 𝑦𝑚 denote the smallest sample;

𝑝(𝑦𝑚 = 𝑥|𝑚 = 𝑖) = 𝑝(𝑦𝑚 = 𝑥) P[𝑚 = 𝑖|𝑦𝑚 = 𝑥]
P(𝑚 = 𝑖)

= 𝑝[𝑦𝑚 = 𝑥] P[𝑚 = 𝑖|𝑦𝑚 = 𝑥]
P[𝑚 = 𝑖]

= 𝑝[𝑦𝑚 = 𝑥] 1/𝑘
1/𝑘

= 𝑝[𝑦𝑚 = 𝑥]

Where lower case 𝑝 denotes probability density, and P[𝑚 = 𝑖|𝑦𝑚 = 𝑥] is the probability that the smallest
sample was 𝑖, given that the smallest sample had a value of 𝑥.
This demonstrates that knowing which sample is the smallest does not affect the probability distribution
of the value of the smallest. For simplicity let’s assume the first sample is the smallest, so we now want
to figure out 𝑝[𝑦1 = 𝑥|𝑚 = 1].
Again, using Bayes law we can transform this into an easier question.

𝑝[𝑦1 = 𝑥|𝑚 = 1] = P[𝑚 = 1|𝑦1 = 𝑥] 𝑝[𝑦1 = 𝑥]
P[𝑚 = 1]

= P[𝑚 = 1|𝑦1 = 𝑥]
1/𝑘

Where 𝑝[𝑦1 = 𝑥] = 1, because Y ∼ U(0, 1).
𝑚 = 1 when ∀𝑘>1 𝑦𝑘 ≥ 𝑦1 — equivalent to 𝑘 − 1 flips, all coming up tails, of a coin with probability of
heads 𝑦1.
So P[𝑚 = 1|𝑦1 = 𝑥] = (1 − 𝑦1)𝑘−1.
Combining,

𝑝[𝑦1 = 𝑥|𝑚 = 1] = P[𝑚 = 1|𝑦1 = 𝑥]
1/𝑘

= 𝑘(1 − 𝑦1)𝑘−1
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Binomial Distribution Summary Statistics

Problem 5.
An basket contains 𝑘 balls, of which 𝑏 are black. One ball is drawn from the basket and then replaced. This
is done 𝑛 times.

Let 𝑛𝑏 denote the number of times the ball drawn is black.

Question:

In terms of the variables 𝑘, 𝑏 and 𝑛;

Solution: 5a. What is the probability distribution of 𝑛𝑏?

Let 𝑝 denote the probability of drawing a black ball: 𝑏
𝑘 .

𝑛𝑏 ∼ binomial dist.(n, p) = ( 𝑛
𝑛𝑏

)𝑝𝑛𝑏(1 − 𝑝)𝑛−𝑛𝑏

5b. What is the mean, variance, and standard deviation of this probability distribution?

mean: μ = 𝑛𝑝 = 𝑛 𝑏
𝑘 variance: σ2 = 𝑛E[(B − 𝑝)2], where B is an indicator variable defined for a single

draw as: B = 1 if the drawn ball is black and, B = 0 otherwise.

E[(B − 𝑝)2] = P[B = 0](0 − 𝑝)2 + P[B = 1](1 − 𝑝)2 = (1 − 𝑝) (0 − 𝑝)2 + 𝑝 (1 − 𝑝)2 =(1 − 𝑝)𝑝2 + 𝑝(1 − 𝑝)2

= 𝑝(1 − 𝑝)(𝑝 + (1 − 𝑝)) = 𝑝(1 − 𝑝)

So variance is σ2 = 𝑛𝑝(1 − 𝑝) = μ(1 − 𝑝) and standard deviation is σ =
√

σ2.

5c. What is the mean, variance, and standard deviation of 𝑛𝑏 for the specific cases of: n=5, b=2, k=10;
and n=225, b=2, k=10?

𝑛 𝑝 μ σ2 σ

5 0.20 5 ⋅ 0.2 = 1 1 ⋅ 0.8 = 0.8
√

0.8 ≈ 0.894

225 0.20 225 ⋅ 0.2 = 45 45 ⋅ 0.8 = 36
√

36 = 6
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Balls and Baskets

Problem 6.
There are five baskets, 𝑢0 … 𝑢4, each contains 4 balls. Of the four balls they contain, 𝑢0 has no black balls,
𝑢1 has one black ball, …, finally 𝑢4 has only black balls (4/4).
First, a basket 𝑢 is picked at random (with 𝑢0 … 𝑢4 all having an equal chance).

Then 3 balls are randomly drawn from basket 𝑢, one at a time, replacing the ball each time.
In other words 3 balls are sampled from 𝑢 with replacement.
Let 𝑏 denote the number of the 3 drawn balls which are black.

Question:
In the case where 𝑏 = 2, what is the probability that the next ball drawn will be black?
Show your work.

Solution: First we observe that since both a black and a non-black ball have been drawn, we can
eliminate 𝑢0 and 𝑢4 from consideration.

Next we note that the prior probability of picking each basket is uniform, so the posterior probability
of the basket will be proportional to the likelihood.
The problem statement gives only the counts (two black and one non-black). I assert that assuming a
particular sequence will not change the answer and slightly simplifies the likelihood. So let’s assume our
data is a particular sequence with two black balls, say (black, black, non-black). Given this data, the
likelihood of a basket with probability 𝑝 is 𝑝2(1 − 𝑝).
Computing this for the three baskets yields:

P[black|𝑢𝑖] P[data|𝑢𝑖] 64 P[data|𝑢𝑖] = 20 P[𝑢𝑖|data] 20 P[𝑢𝑖|data] 4 P[black|𝑢𝑖]

basket 𝑢𝑖 𝑝 𝑝2(1 − 𝑝) 𝑝2(1 − 𝑝)/43

𝑢1
1
4

1
4

2 3
4 12 ⋅ 3 = 3 3 ⋅ 1 = 3

𝑢2
2
4

2
4

2 2
4 22 ⋅ 2 = 8 8 ⋅ 2 = 16

𝑢3
3
4

3
4

2 1
4 32 ⋅ 1 = 9 9 ⋅ 3 = 27

relevant sums 20
64 20 80 P[black|data] = 46

Answer: 46
80 = 23

40 = 0.575
Check our work.

64 P[data|𝑢𝑖] = 20 P[𝑢𝑖|data] ⟹ 20
64

= P[data|𝑢𝑖]
P[𝑢𝑖|data]

≡ P[data]
P[𝑢𝑖]

From the problem statement we know P[𝑢𝑖] = 1
5 ,

so the above implies that 5P[data] = 20
64 ⟹ P[data] = 4

64 = 1
16 .

Let’s check. From the table above, we know ∑𝑢𝑖
P[data|𝑢𝑖] = 20

64 .

The joint probability P[data, 𝑢𝑖] ≡ P[𝑢𝑖] P[data|𝑢𝑖],
All P[𝑢𝑖] terms are equal so,

P[data] = ∑
𝑢𝑖

P[𝑢𝑖] P[data|𝑢𝑖] = ∑
𝑢𝑖

1
5

P[data|𝑢𝑖] = 1
5

∑
𝑢𝑖

P[data|𝑢𝑖] = 1
5

20
64

= 4
64

= 1
16

✓
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