Final. Closed book and calculators not allowed. Answers may include e?, Vo ete. but simplfy when possible.

Exam written by Paul Horton ©2019.



Gaussian mean estimation

Your Name:

Problem 1.

Recall that a Gaussian prior is conjugate to the mean of a Gaussian distribution.
Given:

1. a random variable X is distributed normally given its mean, i.e. X|u ~(,,1)
2. our prior belief regarding « is a standard normal: « ~ (0,1)
3. we have one data point x; = 10.

Question: what is the posterior distribution of u« after observing x1?

la. Informally justify your answer (A AR HC)
1b. (Challenging?) Mathematically prove your answer.
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Gaussian mean estimation

Solution: This is a mean problem. Seriously, thinking clearly about “the mean of a mean” is part of
the challenge here. Let ¢ x denote the mean of the data and uy = 0 denote the mean of our prior
estimate of w« x.

plilz] = plu ] plei| ] = o~ (ug,1) - 21~ (W4, 1) exp (W) exp <W>

Note that by using o¢, I have omitted terms independent of u .

This equation is symmetric in terms of «y and x1,

so my intuition is that the result will have a mean of £ 0;“ = 3.

The question states that a Gaussian prior is conjugate to the mean of a Gaussian distribution, So the
- . L . 2 2

trick is to see if the posterior is equivalent to (U post, 0 post); Where U post, 0 posy are the mean and

variation of the posterior estimate of « .

Lt olz1] = pltt o] pliea | & o]0 exp(‘“ (10‘“)2)% exp<—(“post—“w)2>??

2 20 50st

Repeating the above equation, with substitutions «y—0,x1—10:

pli plz1] = pli ] plea|mz]oe exp <_§§> exp <_(102_“)2> —  exp (—ﬂi — (120 - M:I:)2>

Next we try to simplify the exponent:

—ul (10— u,)? =1 (ui +(10 — um)Q) = 120 —210u,+10%) =  —1(2u” — 204, +100)

Let’s also consider my guess of % = 5.

(=5 = =1 = 10U, +25) = (217 — 204, 4 50)

Using the hint from the corresponding terms in blue.

—u2 = (10 — u,)?
o (2200221

exp

(—1(2M2 — 200, + 100))

= exp .9

(2.2 —20/41—1—50) %50
= exp exp W

Y -
—Y% - 50 —(uy — 5)?
1/2 )exp( ) )Ocexp(%.2 )OCMQC"’(5,1/2)

—16(2u2 — 201, + 100))

= exp

So the posterior distribution of «, should follow a normal distribution with mean 5 and variance %.
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Rolling Dice

Your Name:

Problem 2.

Imagine rolling a (not necessarily fair) 4-sided die, numbered {1,2,3,4}.

Given:

1. Prior: Your prior belief on the probability of each side is Dirichlet(%, %4, %, 1%).
2. Data: You roll the die twice, getting a 1 and a 3.

Question:
2a. What is the posterior distribution over {1,2,3,4} after observing the data?

Solution:

P[die|data] = P[die| - P[dataldie| o Dirichlet(%, %, %, %) - p1 ps &< Dirichlet(g, g

)

N

b

1
9’

Where “P[die]” denotes the prior estimate of the innate probability of {1,2,3,4} of the die; and I have used
oc so that I can omit normalization terms.
2b. What is the probability that the next die roll yields a 37

Solution: By the “pseudo-counts” method, the probability of a 3 is:

1+% 15 3

P3l=r—7r = =
3 244-% 4 8
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Bayes (Belief) Network

Your Name:

Problem 3.
B D
E G
C F
The above graph is a Bayesian network (aka Belief Network, or probabilistic graphical model). Consider the
(g) = 35 possible triples of nodes in alphabetical order (A,B,C); (A,B,D); ... ; (E;F,G).
Question:

List the triples (X,Y,Z) for which X and Y are conditionally independent given Z.
Where X, Y, Z € {A,....G},X £Y, X £ Z)Y # Z.
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Bayes (Belief) Network

Solution: First let’s cut down on the number of (X,Y) pairs. According to the “alphabetical order”
condition X and Y cannot be G.

Also note that a direct edge X — Y indicates a dependency between X and Y which cannot be “blocked”
by any other node. This immediately precludes the pairs: {AB, AC, BD, BE, CE, CF} being condition-
ally independent.

For the remaining possibilities we consider more general rules. A Bayesian network guarantees X 1Y |Z,
the conditional independence of nodes X,Y given node Z

iff all (undirected) paths in from X to Y match one of the following three patterns.

1. X>Z—=>Y o Y—->Z—->X
2. X<7Z—-Y
3. X>W<Y where W # Z, nor is W descendent from Z.

So the game is to find a counter-example path from X to Y which does not match any of the above rules.

XY|Z Counter Example Path Reason

ADE A—-B~—D simple chain without E

ADF A—-B~—D simple chain without F

AD|IG A—-B—D simple chain without G

AE[F A—->B—E simple chain without F

AEIG A—B—E simple chain without G

AFIG A—-C—F simple chain without G

BCD B<A—-C B and C have common parent # D
BCIE B—E<«<C —*< node E is E itself

BCIF B< A—-C B and C have common parent # F
BCIG B—=>D—->G<F«< C —*nodeGisG itself

BFIG B—=D—->G<F —*< node G is G itself

CDE C—=>F—->G<D —*< node is G is a descendant of E
CDIF C—F—->G<D —*< node is G is a descendant of F
CDIG C—F—->G<D —*< node G is G itself

DE[F D—->G<E —*< node G is a descendant of F
DE[G D—->G<E —*< node G is G itself

DFIG D—>G<F —*< node G is G itself

EFIG E—-G<F —*< node G is G itself

Answer: None of the triples fulfill X 1Y |Z.
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Beta Distribution

Your Name:

Problem 4.
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"Headiness” of the coin

This is a coin flipping problem.
Recall a beta distribution is defined as:

T(a+0b)

OO

Py~ BetaDist(a, b)

Given:

1. the data is a single coin toss, yielding “heads”.

2. a beta distribution BetaDist(a,b) was used as a prior.
3. the posterior distribution is as plotted above.

Question:
What were the parameters (a,b) of the beta distribution prior?

Solution: The data is a single head so the likelihood is proportional to Pp.
The posterior distribution plotted in the figure above is a straight line with the probability density

proportional to Pg. So, posterior ¢ Py and likelihood °¢ Py.

prior = posterior/likelihood = constant.

Therefore the prior must have been BetaDist(1, 1), since these are the only parameters to BetaDist which
give a constant density.
r(1+1)

BetaDist(1,1) (1) T(1)
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Your Name:

Naive Bayes Classifer

Problem 5.

Dataset:
Class F 1 F: 2 F: 3
A good good okay
A bad  bad good
A bad okay okay
A okay okay good
A bad okay good
B good okay okay
B okay okay  bad
B okay good  bad
B good bad  bad

Question:

Specify a Naive Bayes classifer based on the above dataset.

Your classifier should provide enough information to compute the numerical value of Plclass = A|F, Fy, F3]

for all 27 combinations of (Fy, Fz, F3) € {good, okay, bad}.
Explicitly state all priors used.
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Naive Bayes Classifer

Solution: This is the preferred solution, using pseudo-counts to reflect prior distributions. Let’s start
by writing the defining equation for Naive Bayes

P[C|Fy, Fy, F3]°P[C] P[F, Fy, F5|C]* P[C] P[F1|C] P[F;|C] P[F3|C]

So the parameters needed are P[C], and the three P[F|C] terms.

The problem says to “explicitly state all priors used”. I will choose to use a BetaDist(0.5,0.5) as prior for
P[C]. The data on P[C] is five As out of total of 9 data items, so using “pseudo-counts” the posterior
probability of P[C] would be BetaDist(0.5 + 5,0.5 + 4) = BetaDist(5.5,4.5). Each feature has three
possible values {good, okay,bad}, so it is useful to use a Dirichlet distribution as a prior. Here I will
assume Dirichlet 0.5,0.5,0.5 for all 3x2=6 possible combinations of feature and class.

It would be in the spirit of this course to derive the posterior distribution of P[C|F}y, Fs, F3]. However 1
did not go through that in class and I doubt most people do Naive Bayes classifiers that way.

So instead let’s use these priors less ambitiously — as a way to obtain maxzimum a posterior (MAP)
estimates.

Using pseudo-counts and the data counts of 5 class A out of 9 samples,

we can compute the MAP estimate of P[C = A] = 5;_815 = 0.55.

Likewise the MAP estimate of P[F|C] is given by:

N(FMC’]) + 0.5 . QN(F“CJ) +1
N(Cj)+305 N 2N(Cj)‘|‘3

Where N (X) denotes the count of X in the data. The following table summarizes those counts.

MAP estimate P[F;|C;] =

feature F} feature Fy feature F3
class A class B class A class B class A class B
good okay | good okay | good okay | good okay | good okay | good okay
N(E|C)) | 1 1 2 2 1 3 1 2 3 2 0 1
3 3 5 5 3 7 3 5 7 5 1 3
PIEIC] | 15 % | w1 1w | 15 13 | it o | 13 i3 | 1w i

Where N[X] denotes the number of X observed in the data.
And P[bad|C] can be computed as 1 — P[good|C| — P[okay|C].
Here I list an example to demonstrate that we have defined enough parameters.

P[C = A|(good,bad, okay)] oc P[C = good] P[F; = good|A] P[F; = bad|A] P[F5 = okay|A]
313-3-75 3-3-5 0.55-45

= 055 —w——F——-=055" - = -

13 13 13 133 133

P[C = B|(good,bad, okay)] ©¢ P[C =bad] P[F} = good|B] P[F; = bad|B| P[F5 = okay|B]

511-3-53 5-3-3 0.45-45

= 045 ——————— =045 - -
11 11 11 113 113
So,
P[C = A|(good, bad, okay)]  0.55-45-11°  11* 14641 0.7405
P[C = B|(good, bad, okay)]  0.45-45-133  9-13% 19773
And therefore,
0.7405
PIC=A d, bad, ok r —————= (.42
[C |(g00 ? al 70 ay)] 1+0.7405 0 5

Yes, this is too much arithmetic for a closed calculator exam.
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Naive Bayes Classifer

Solution: Partial credit solution.
neglected.

If someone explicitly wrote that they were using an improper BetaDist(0, 0) prior, I might have allowed
that, but no one did. So I have assumed students with an answer like the one below simply neglected
the notion of priors.

Let’s start by writing the defining equation for Naive Bayes

This is a solution in which the effect of the prior is completely

P[C|F\, Fy, F3)ocP[C] P|Fy, Fy, F5|C)= P[C] P[Fy|C] P[F2|C] P[Fs|C]
So the parameters needed are P[C], and the three P[F|C] terms.
5 out of 9 data samples are of class A, so without pseudo-counts, P[C' = A] = 5, and P[C = B| = 3.
Likewise the estimates of P[F|C] are also just taken directly from counts in the dataset.
N(F;,Cj)
N(Gj)

Where N(X) denotes the count of X in the data. The following table summarizes those counts.

no-pseudocount estimate P[F;|C;] =

feature F} feature Fy feature F3
class A class B class A class B class A class B
good okay | good okay | good okay | good okay | good okay | good okay
N(F;|Cy) 1 1 2 2 1 3 1 2 3 2 0 1
PRIGI |+ 3|3 3% 3% 3|% %|% 3

Where N[X] denotes the number of X observed in the data.
And P[bad|C] can be computed as 1 — P[good|C| — P[okay|C].
Here I list an example to demonstrate that we have defined enough parameters.

P[C = A|(good,bad, okay)] oc P[C = good| P[F; = good|A] P[F; = bad|A] P[F5 = okay|A]
5 15-1-32 5 1-1.2 2

95 5 5 9 53 9.52

P[C = B|(good,bad, okay)] ©¢ P[C =bad] P[F} = good|B] P[F; = bad|B| P[F5 = okay|B]

4 24-1-21 4 2-1-1 2

So,
P[C = A|(good, bad, okay)] T B g _ 16 0.64
P[C = B|(good, bad, okay)] 5% 52 25
And therefore,
B8 _w
P[C = A|(good, bad, okay)] = 17516 = 25_516 = 0.390
T3 25
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