Final. Closed book and calculators not allowed. Answers may include e^2 , $\sqrt{}$, etc. but simplfy when possible.

Exam written by Paul Horton ©2019.

Your Name: ____

Problem 1.

Recall that a Gaussian prior is conjugate to the mean of a Gaussian distribution. Given:

- 1. a random variable X is distributed normally given its mean, i.e. $X \mid \mu \sim (\mu_x, 1)$
- 2. our prior belief regarding μ is a standard normal: $\mu \sim (0,1)$
- 3. we have one data point $x_1 = 10$.

Question: what is the posterior distribution of μ after observing x_1 ?

1a. Informally justify your answer (可以用中文)

1b. (Challenging?) Mathematically prove your answer.

Solution: This is a mean problem. Seriously, thinking clearly about "the mean of a mean" is part of the challenge here. Let μ_X denote the mean of the data and $u_0 = 0$ denote the mean of our prior estimate of μ_X .

$$p[\mu_x|x_1] = p[\mu_x] p[x_1|\mu_x] = \mu_x \sim (u_0, 1) \cdot x_1 \sim (\mu_x, 1) \propto \exp\left(\frac{-(\mu_x - u_0)^2}{2}\right) \exp\left(\frac{-(x_1 - \mu_x)^2}{2}\right)$$

Note that by using ∞ , I have omitted terms independent of μ_x . This equation is symmetric in terms of μ_0 and x_1 ,

so my intuition is that the result will have a mean of $\frac{\mu_0 + x_1}{2} = \frac{x_1}{2}$. The question states that a Gaussian prior is conjugate to the mean of a Gaussian distribution, So the trick is to see if the posterior is equivalent to $(\mu_{\text{post}}, \sigma_{\text{post}}^2)$, where $\mu_{\text{post}}, \sigma_{\text{post}}^2$ are the mean and variation of the posterior estimate of μ_x .

$$p[\mu_x|x_1] = p[\mu_x] p[x_1|\mu_x] \propto \exp\left(\frac{-\mu_x^2 - (10 - \mu_x)^2}{2}\right) \propto \exp\left(\frac{-(\mu_{\text{post}} - \mu_x)^2}{2\sigma_{\text{post}}^2}\right)??$$

Repeating the above equation, with substitutions $\mu_0 \rightarrow 0, x_1 \rightarrow 10$:

$$p[\mu_x|x_1] = p[\mu_x] p[x_1|\mu_x] \propto \exp\left(\frac{-\mu_x^2}{2}\right) \exp\left(\frac{-(10-\mu_x)^2}{2}\right) = \exp\left(\frac{-\mu_x^2 - (10-\mu_x)^2}{2}\right)$$

Next we try to simplify the exponent:

$$-\mu_x^2 - (10 - \mu_x)^2 = -1\left(\mu_x^2 + (10 - \mu_x)^2\right) = -1(2\mu_x^2 - 2 \cdot 10\mu_x + 10^2) = -1(2\mu_x^2 - 20\mu_x + 100)$$

Let's also consider my guess of $\frac{10}{2} = 5$.

$$-(\mu_x - 5)^2 = -1(\mu_x^2 - 10\mu_x + 25) = -\frac{1}{2}(2\mu_x^2 - 20\mu_x + 50)$$

Using the hint from the corresponding terms in blue.

$$\exp\left(\frac{-\mu_x^2 - (10 - \mu_x)^2}{2}\right) = \exp\left(\frac{-1(2\mu_x^2 - 20\mu_x + 100)}{2}\right)$$
$$= \exp\left(\frac{-\frac{1}{2}(2\mu_x^2 - 20\mu_x + 100)}{\frac{1}{2} \cdot 2}\right)$$
$$= \exp\left(\frac{-\frac{1}{2}(2\mu_x^2 - 20\mu_x + 50)}{\frac{1}{2} \cdot 2}\right) \exp\left(\frac{-\frac{1}{2} \cdot 50}{\frac{1}{2} \cdot 2}\right)$$
$$= \exp\left(\frac{-(\mu_x - 5)^2}{\frac{1}{2} \cdot 2}\right) \exp\left(\frac{-\frac{1}{2} \cdot 50}{\frac{1}{2} \cdot 2}\right) \infty \exp\left(\frac{-(\mu_x - 5)^2}{\frac{1}{2} \cdot 2}\right) \infty \mu_x \sim (5, \frac{1}{2})$$

So the posterior distribution of $\,\mu_{\,x}$ should follow a normal distribution with mean 5 and variance ½.

Your Name: _

Problem 2.

Imagine rolling a (not necessarily fair) 4-sided die, number ed $\{1,2,3,4\}.$ Given:

1. Prior: Your prior belief on the probability of each side is Dirichlet (½, ½, ½, ½).

2. Data: You roll the die twice, getting a 1 and a 3.

Question:

2a. What is the posterior distribution over $\{1,2,3,4\}$ after observing the data?

Solution:

 $P[\texttt{die}|\texttt{data}] = P[\texttt{die}] \cdot P[\texttt{data}|\texttt{die}] \propto \quad \text{Dirichlet}(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2})$

Where "P[die]" denotes the prior estimate of the innate probability of $\{1,2,3,4\}$ of the die; and I have used ∞ so that I can omit normalization terms.

2b. What is the probability that the next die roll yields a 3?

Solution: By the "pseudo-counts" method, the probability of a ${\tt 3}$ is:

$$P[\mathbf{3}] = \frac{1 + \frac{1}{2}}{2 + 4 \cdot \frac{1}{2}} = \frac{1.5}{4} = \frac{3}{8}$$

The above graph is a Bayesian network (aka Belief Network, or probabilistic graphical model). Consider the $\binom{7}{3} = 35$ possible triples of nodes in alphabetical order (A,B,C); (A,B,D); ...; (E,F,G).

Question:

List the triples (X,Y,Z) for which X and Y are conditionally independent given Z. Where $X, Y, Z \in \{A, \dots, G\}, X \neq Y, X \neq Z, Y \neq Z$. Solution: First let's cut down on the number of (X,Y) pairs. According to the "alphabetical order" condition X and Y cannot be G.

Also note that a direct edge $X \rightarrow Y$ indicates a dependency between X and Y which cannot be "blocked" by any other node. This immediately precludes the pairs: {AB, AC, BD, BE, CE, CF} being conditionally independent.

For the remaining possibilities we consider more general rules. A Bayesian network guarantees $X \perp Y | Z$, the conditional independence of nodes X, Y given node Z

iff all (undirected) paths in from X to Y match one of the following three patterns.

- 1. $X \to Z \to Y$ or $Y \to Z \to X$
- 2. $X \leftarrow Z \rightarrow Y$
- 3. $X \to W \leftarrow Y$ where $W \neq Z$, nor is W descendent from Z.

So the game is to find a counter-example path from X to Y which does not match any of the above rules.

XY Z	Counter Example Path	Reason
AD E	$A \rightarrow B \rightarrow D$	simple chain without E
AD F	$A \rightarrow B \rightarrow D$	simple chain without F
AD G	$A \rightarrow B \rightarrow D$	simple chain without G
AE F	$A \rightarrow B \rightarrow E$	simple chain without F
AE G	$A \rightarrow B \rightarrow E$	simple chain without G
AF G	$\mathbf{A} \to \mathbf{C} \to \mathbf{F}$	simple chain without G
BC D	$\mathbf{B} \leftarrow \mathbf{A} \rightarrow \mathbf{C}$	B and C have common parent \neq D
BC E	$\mathbf{B} \to \mathbf{E} \leftarrow \mathbf{C}$	$\rightarrow^* \leftarrow$ node E is E itself
BC F	$\mathbf{B} \leftarrow \mathbf{A} \rightarrow \mathbf{C}$	B and C have common parent \neq F
BC G	$\mathbf{B} \to \mathbf{D} \to \mathbf{G} \leftarrow \mathbf{F} \leftarrow \mathbf{C}$	$\rightarrow^* \leftarrow$ node G is G itself
BF G	$\mathbf{B} \to \mathbf{D} \to \mathbf{G} \leftarrow \mathbf{F}$	$\rightarrow^* \leftarrow$ node G is G itself
CD E	$\mathbf{C} \to \mathbf{F} \to \mathbf{G} \leftarrow \mathbf{D}$	→*← node is G is a descendant of E
CD F	$\mathbf{C} \to \mathbf{F} \to \mathbf{G} \leftarrow \mathbf{D}$	→*← node is G is a descendant of F
CD G	$\mathbf{C} \to \mathbf{F} \to \mathbf{G} \leftarrow \mathbf{D}$	$\rightarrow^* \leftarrow$ node G is G itself
DE F	$D \rightarrow G \leftarrow E$	$\rightarrow^* \leftarrow$ node G is a descendant of F
DE G	$\mathbf{D} \to \mathbf{G} \leftarrow \mathbf{E}$	$\rightarrow^* \leftarrow$ node G is G itself
DF G	$\mathbf{D} \to \mathbf{G} \leftarrow \mathbf{F}$	$\rightarrow^* \leftarrow$ node G is G itself
$\mathrm{EF} \mathrm{G}$	$\mathbf{E} \to \mathbf{G} \leftarrow \mathbf{F}$	$\rightarrow^* \leftarrow$ node G is G itself
A	. Name of the twinted of follow	$V \mid V \mid Z$

Answer: None of the triples fulfill $X \perp Y \mid Z$.

Your Name: _

Problem 4.

This is a coin flipping problem. Recall a beta distribution is defined as:

$$P_H \sim \text{BetaDist}(a, b) \quad \frac{\Gamma(a+b)}{\Gamma(a)\,\Gamma(b)} P_H^{a-1} (1-P_H)^{b-1}$$

Given:

1. the data is a single coin toss, yielding "heads".

2. a beta distribution BetaDist(a, b) was used as a prior.

3. the posterior distribution is as plotted above.

Question:

What were the parameters (a, b) of the beta distribution prior?

Solution: The data is a single head so the likelihood is proportional to P_H . The posterior distribution plotted in the figure above is a straight line with the probability density proportional to P_H . So, posterior $\propto P_H$ and likelihood $\propto P_H$.

prior = posterior/likelihood = constant.

Therefore the prior must have been BetaDist(1, 1), since these are the only parameters to BetaDist which give a constant density.

BetaDist(1,1)
$$\frac{\Gamma(1+1)}{\Gamma(1)\Gamma(1)} P_H^{1-1} (1-P_H)^{1-1} = \frac{1}{1\cdot 1} P_H^0 (1-P_H)^0 = 1$$

Your Name: _____

Problem 5.

Dataset:

Class	F_1	F_2	F_3
Α	good	good	okay
\mathbf{A}	bad	bad	good
\mathbf{A}	bad	okay	okay
\mathbf{A}	okay	okay	good
\mathbf{A}	bad	okay	good
В	good	okay	okay
В	okay	okay	bad
в	okay	good	bad
в	good	bad	bad

Question:

Specify a Naïve Bayes classifer based on the above dataset.

Your classifier should provide enough information to compute the numerical value of $P[class = \mathbf{A}|F_1, F_2, F_3]$ for all 27 combinations of $(F_1, F_2, F_3) \in \{\text{good}, \text{okay}, \text{bad}\}$. Explicitly state all priors used. **Solution:** This is the preferred solution, using pseudo-counts to reflect prior distributions. Let's start by writing the defining equation for Naïve Bayes

$$P[C|F_1, F_2, F_3] \propto P[C] P[F_1, F_2, F_3|C] \approx P[C] P[F_1|C] P[F_2|C] P[F_3|C]$$

So the parameters needed are P[C], and the three P[F|C] terms.

The problem says to "explicitly state all priors used". I will choose to use a BetaDist(0.5, 0.5) as prior for P[C]. The data on P[C] is five **A**s out of total of 9 data items, so using "pseudo-counts" the posterior probability of P[C] would be BetaDist(0.5 + 5, 0.5 + 4) = BetaDist(5.5, 4.5). Each feature has three possible values {good, okay, bad}, so it is useful to use a Dirichlet distribution as a prior. Here I will assume Dirichlet 0.5, 0.5, 0.5 for all 3x2=6 possible combinations of feature and class.

It would be in the spirit of this course to derive the posterior distribution of $P[C|F_1, F_2, F_3]$. However I did not go through that in class and I doubt most people do Naïve Bayes classifiers that way.

So instead let's use these priors less ambitiously — as a way to obtain *maximum a posterior* (MAP) estimates.

Using pseudo-counts and the data counts of 5 class **A** out of 9 samples, we can compute the MAP estimate of $P[C = \mathbf{A}] = \frac{5+0.5}{9+1} = 0.55$. Likewise the MAP estimate of P[F|C] is given by:

MAP estimate
$$P[F_i|C_j] = \frac{N(F_i, C_j) + 0.5}{N(C_i) + 3 \cdot 0.5} = \frac{2N(F_i, C_j) + 1}{2N(C_i) + 3}$$

Where N(X) denotes the count of X in the data. The following table summarizes those counts.

	feature F_1				feature F_2				feature F_3			
	class \mathbf{A}		class \mathbf{B}		class \mathbf{A}		class \mathbf{B}		class \mathbf{A}		class \mathbf{B}	
	good	okay										
$N(F_i C_j)$	1	1	2	2	1	3	1	2	3	2	0	1
$P[F_i C_j]$	$\frac{3}{13}$	$\frac{3}{13}$	$\frac{5}{11}$	$\frac{5}{11}$	$\frac{3}{13}$	$\frac{7}{13}$	$\frac{3}{11}$	$\frac{5}{11}$	$\frac{7}{13}$	$\frac{5}{13}$	$\frac{1}{11}$	$\frac{3}{11}$

Where N[X] denotes the number of X observed in the data.

And $P[\mathsf{bad}|C]$ can be computed as $1 - P[\mathsf{good}|C] - P[\mathsf{okay}|C]$.

Here I list an example to demonstrate that we have defined enough parameters.

$$\begin{split} P[C = \mathbf{A} | (\texttt{good}, \texttt{bad}, \texttt{okay})] & \propto \quad P[C = \texttt{good}] \; P[F_1 = \texttt{good} | \mathbf{A}] \; P[F_2 = \texttt{bad} | \mathbf{A}] \; P[F_3 = \texttt{okay} | \mathbf{A}] \\ & = \quad 0.55 \cdot \frac{3}{13} \frac{13 - 3 - 7}{13} \frac{5}{13} = 0.55 \cdot \frac{3 \cdot 3 \cdot 5}{13^3} = \frac{0.55 \cdot 45}{13^3} \end{split}$$

$$\begin{split} P[C = \mathbf{B} | (\texttt{good}, \texttt{bad}, \texttt{okay})] & \propto \quad P[C = \texttt{bad}] \; P[F_1 = \texttt{good} | \mathbf{B}] \; P[F_2 = \texttt{bad} | \mathbf{B}] \; P[F_3 = \texttt{okay} | \mathbf{B}] \\ & = \quad 0.45 \cdot \frac{5}{11} \frac{11 - 3 - 5}{11} \frac{3}{11} = 0.45 \cdot \frac{5 \cdot 3 \cdot 3}{11^3} = \frac{0.45 \cdot 45}{11^3} \end{split}$$

So,

$$\frac{P[C = \mathbf{A} | (\texttt{good}, \texttt{bad}, \texttt{okay})]}{P[C = \mathbf{B} | (\texttt{good}, \texttt{bad}, \texttt{okay})]} = \frac{0.55 \cdot 45 \cdot 11^3}{0.45 \cdot 45 \cdot 13^3} = \frac{11^4}{9 \cdot 13^3} = \frac{14641}{19773} = 0.7405$$

And therefore,

$$P[C = \mathbf{A} | (\texttt{good}, \texttt{bad}, \texttt{okay})] \approx \ \frac{0.7405}{1 + 0.7405} \approx \ 0.425$$

Yes, this is too much arithmetic for a closed calculator exam.

Solution: Partial credit solution. This is a solution in which the effect of the prior is completely neglected.

If someone explicitly wrote that they were using an improper BetaDist(0,0) prior, I might have allowed that, but no one did. So I have assumed students with an answer like the one below simply neglected the notion of priors.

Let's start by writing the defining equation for Naïve Bayes

$$P[C|F_1, F_2, F_3] \propto P[C] P[F_1, F_2, F_3|C] \approx P[C] P[F_1|C] P[F_2|C] P[F_3|C]$$

So the parameters needed are P[C], and the three P[F|C] terms.

5 out of 9 data samples are of class **A**, so without pseudo-counts, $P[C = \mathbf{A}] = \frac{5}{9}$, and $P[C = \mathbf{B}] = \frac{4}{9}$. Likewise the estimates of P[F|C] are also just taken directly from counts in the dataset.

no-pseudocount estimate
$$P[F_i|C_j] = \frac{N(F_i, C_j)}{N(C_j)}$$

Where $N(\mathbf{X})$ denotes the count of **X** in the data. The following table summarizes those counts.

	feature F_1				feature F_2				feature F_3			
	class \mathbf{A}		class \mathbf{B}		class \mathbf{A}		class ${\bf B}$		class \mathbf{A}		class \mathbf{B}	
	good	okay	good	okay	good	okay	good	okay	good	okay	good	okay
$N(F_i C_j)$	1	1	2	2	1	3	1	2	3	2	0	1
$P[F_i C_j]$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{2}{4}$	$\frac{2}{4}$	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{5}$	$\frac{2}{5}$	$\frac{0}{4}$	$\frac{1}{4}$

Where N[X] denotes the number of X observed in the data.

And $P[\mathsf{bad}|C]$ can be computed as $1 - P[\mathsf{good}|C] - P[\mathsf{okay}|C]$.

Here I list an example to demonstrate that we have defined enough parameters.

$$\begin{split} P[C = \mathbf{A} | (\text{good, bad, okay})] & \propto & P[C = \text{good}] \; P[F_1 = \text{good} |\mathbf{A}] \; P[F_2 = \text{bad} |\mathbf{A}] \; P[F_3 = \text{okay} |\mathbf{A}] \\ & = \; \frac{5}{9} \cdot \frac{1}{5} \frac{5 - 1 - 3}{5} \frac{2}{5} = \frac{5}{9} \cdot \frac{1 \cdot 1 \cdot 2}{5^3} = \frac{2}{9 \cdot 5^2} \\ P[C = \mathbf{B} | (\text{good, bad, okay})] & \propto \; P[C = \text{bad}] \; P[F_1 = \text{good} |\mathbf{B}] \; P[F_2 = \text{bad} |\mathbf{B}] \; P[F_3 = \text{okay} |\mathbf{B}] \\ & = \; \frac{4}{9} \cdot \frac{2}{4} \frac{4 - 1 - 2}{4} \frac{1}{4} = \frac{4}{9} \cdot \frac{2 \cdot 1 \cdot 1}{4^3} = \frac{2}{9 \cdot 4^2} = \end{split}$$

So,

$$\frac{P[C = \mathbf{A} | (\texttt{good}, \texttt{bad}, \texttt{okay})]}{P[C = \mathbf{B} | (\texttt{good}, \texttt{bad}, \texttt{okay})]} = \frac{\frac{2}{9 \cdot 5^2}}{\frac{2}{9 \cdot 4^2}} = \frac{4^2}{5^2} = \frac{16}{25} = 0.64$$

And therefore,

$$P[C = \mathbf{A} | (\texttt{good}, \texttt{bad}, \texttt{okay})] = \frac{\frac{16}{25}}{1 + \frac{16}{25}} = \frac{\frac{16}{25}}{\frac{25 + 16}{25}} = \frac{16}{41} \approx 0.390$$