
Final. Closed book and calculators not allowed. Answers may include e2, √ , etc. but simplfy when possible.

Exam written by Paul Horton ©2019.



Gaussian mean estimation

Your Name:

Problem 1.
Recall that a Gaussian prior is conjugate to the mean of a Gaussian distribution.
Given:
1. a random variable X is distributed normally given its mean, i.e. X|μ〜(μx, 1)
2. our prior belief regarding μ is a standard normal: μ ∼ (0, 1)
3. we have one data point x1 = 10.

Question: what is the posterior distribution of μ after observing x1?

1a. Informally justify your answer (可以用中文)
1b. (Challenging?) Mathematically prove your answer.
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Gaussian mean estimation

Solution: This is a mean problem. Seriously, thinking clearly about “the mean of a mean” is part of
the challenge here. Let μX denote the mean of the data and u0 = 0 denote the mean of our prior
estimate of μX .

p[μx|x1] = p[μx] p[x1|μx] =　μx〜(u0, 1) · x1〜(μx, 1)∝ exp
(
−(μx − u0)

2

2

)
exp

(
−(x1 − μx)

2

2

)
Note that by using ∝, I have omitted terms independent of μx.
This equation is symmetric in terms of μ0 and x1,
so my intuition is that the result will have a mean of μ0+x1

2 = x1

2 .
The question states that a Gaussian prior is conjugate to the mean of a Gaussian distribution, So the
trick is to see if the posterior is equivalent to (μpost,σ

2
post), where μpost,σ

2
post are the mean and

variation of the posterior estimate of μx.

p[μx|x1] = p[μx] p[x1|μx]∝　 exp
(
−μ2

x − (10− μx)
2
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)
∝　 exp

(
−(μpost − μx)
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2σ2
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)
??

Repeating the above equation, with substitutions μ0→0, x1→10:

p[μx|x1] = p[μx] p[x1|μx]∝　 exp
(
−μ2

x

2

)
exp

(
−(10− μx)

2

2

)
=　 exp

(
−μ2

x − (10− μx)
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)
Next we try to simplify the exponent:

−μ2
x−(10−μx)

2 = −1
(
μ

2
x + (10−μx)

2
)
=　−1(2μ

2
x−2·10μx+102) =　−1(2μ

2
x − 20μx+100)

Let’s also consider my guess of 10
2 = 5.

−(μx − 5)2 = −1(μ
2
x − 10μx + 25) = −½(2μ

2
x − 20μx + 50）

Using the hint from the corresponding terms in blue.

exp
(
−μ2

x − (10− μx)
2

2

)
= exp

(
−1(2μ2

x − 20μx + 100)

2

)
= exp

(
−½(2μ2

x − 20μx + 100)

½ · 2

)
= exp

(
−½(2μ2

x − 20μx + 50)

½ · 2

)
exp

(
−½ · 50
½ · 2

)
= exp

(
−(μx − 5)2

½ · 2

)
exp

(
−½ · 50
½ · 2

)
∝ exp

(
−(μx − 5)2

½ · 2

)
∝μx〜(5,½)

So the posterior distribution of μx should follow a normal distribution with mean 5 and variance ½.
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Rolling Dice

Your Name:

Problem 2.
Imagine rolling a (not necessarily fair) 4-sided die, numbered {1,2,3,4}.
Given:
1. Prior: Your prior belief on the probability of each side is Dirichlet(½,½,½,½).
2. Data: You roll the die twice, getting a 1 and a 3.

Question:
2a. What is the posterior distribution over {1,2,3,4} after observing the data?

Solution:

P [die|data] = P [die] · P [data|die]∝　Dirichlet(½,½,½,½) · p1 p3 ∝　Dirichlet(3
2
,
1

2
,
3

2
,
1

2
)

Where “P [die]” denotes the prior estimate of the innate probability of {1,2,3,4} of the die; and I have used
∝ so that I can omit normalization terms.
2b. What is the probability that the next die roll yields a 3?

Solution: By the “pseudo-counts” method, the probability of a 3 is:

P [3] =
1 +½

2 + 4 ·½
=

1.5

4
=

3

8
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Bayes (Belief) Network

Your Name:

Problem 3.

A

B

C

D
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G

The above graph is a Bayesian network (aka Belief Network, or probabilistic graphical model). Consider the(
7
3

)
= 35 possible triples of nodes in alphabetical order (A,B,C); (A,B,D); . . . ; (E,F,G).

Question:
List the triples (X,Y,Z) for which X and Y are conditionally independent given Z.
Where X,Y, Z ∈ {A, . . . , G}, X 6= Y,X 6= Z, Y 6= Z.
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Bayes (Belief) Network

Solution: First let’s cut down on the number of (X,Y) pairs. According to the “alphabetical order”
condition X and Y cannot be G.
Also note that a direct edge X→ Y indicates a dependency between X and Y which cannot be “blocked”
by any other node. This immediately precludes the pairs: {AB, AC, BD, BE, CE, CF} being condition-
ally independent.
For the remaining possibilities we consider more general rules. A Bayesian network guarantees X⊥Y |Z,
the conditional independence of nodes X,Y given node Z
iff all (undirected) paths in from X to Y match one of the following three patterns.

1. X → Z → Y　 or 　 Y → Z → X

2. X ← Z → Y

3. X → W ← Y　 where W ≠ Z, nor is W descendent from Z.

So the game is to find a counter-example path from X to Y which does not match any of the above rules.

XY|Z Counter Example Path Reason
AD|E A → B → D simple chain without E
AD|F A → B → D simple chain without F
AD|G A → B → D simple chain without G
AE|F A → B → E simple chain without F
AE|G A → B → E simple chain without G
AF|G A → C → F simple chain without G
BC|D B ← A → C B and C have common parent ≠ D
BC|E B → E ← C →*← node E is E itself
BC|F B ← A → C B and C have common parent ≠ F
BC|G B → D → G ← F ← C →*← node G is G itself
BF|G B → D → G ← F →*← node G is G itself
CD|E C → F → G ← D →*← node is G is a descendant of E
CD|F C → F → G ← D →*← node is G is a descendant of F
CD|G C → F → G ← D →*← node G is G itself
DE|F D → G ← E →*← node G is a descendant of F
DE|G D → G ← E →*← node G is G itself
DF|G D → G ← F →*← node G is G itself
EF|G E → G ← F →*← node G is G itself

Answer: None of the triples fulfill X⊥Y |Z.
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Beta Distribution

Your Name:

Problem 4.
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This is a coin flipping problem.
Recall a beta distribution is defined as:

PH〜BetaDist(a, b) Γ(a+ b)

Γ(a) Γ(b)
P a−1
H (1− PH)b−1

Given:
1. the data is a single coin toss, yielding “heads”.
2. a beta distribution BetaDist(a, b) was used as a prior.
3. the posterior distribution is as plotted above.

Question:
What were the parameters (a, b) of the beta distribution prior?

Solution: The data is a single head so the likelihood is proportional to PH .
The posterior distribution plotted in the figure above is a straight line with the probability density
proportional to PH . So, posterior∝ PH and likelihood∝ PH .

prior = posterior/likelihood = constant.

Therefore the prior must have been BetaDist(1, 1), since these are the only parameters to BetaDist which
give a constant density.

BetaDist(1, 1) Γ(1 + 1)

Γ(1) Γ(1)
P 1−1
H (1− PH)1−1 =

1

1 · 1
P 0
H (1− PH)0 = 1
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Naïve Bayes Classifer

Your Name:

Problem 5.
Dataset:

Class F1 F2 F3

A good good okay
A bad bad good
A bad okay okay
A okay okay good
A bad okay good
B good okay okay
B okay okay bad
B okay good bad
B good bad bad

Question:
Specify a Naïve Bayes classifer based on the above dataset.
Your classifier should provide enough information to compute the numerical value of P [class = A|F1, F2, F3]
for all 27 combinations of (F1, F2, F3) ∈ {good, okay,bad}.
Explicitly state all priors used.
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Naïve Bayes Classifer

Solution: This is the preferred solution, using pseudo-counts to reflect prior distributions. Let’s start
by writing the defining equation for Naïve Bayes

P [C|F1, F2, F3]∝P [C] P [F1, F2, F3|C]≈ P [C] P [F1|C] P [F2|C] P [F3|C]

So the parameters needed are P [C], and the three P [F |C] terms.
The problem says to “explicitly state all priors used”. I will choose to use a BetaDist(0.5, 0.5) as prior for
P [C]. The data on P [C] is five As out of total of 9 data items, so using “pseudo-counts” the posterior
probability of P [C] would be BetaDist(0.5 + 5, 0.5 + 4) = BetaDist(5.5, 4.5). Each feature has three
possible values {good, okay, bad}, so it is useful to use a Dirichlet distribution as a prior. Here I will
assume Dirichlet 0.5, 0.5, 0.5 for all 3x2=6 possible combinations of feature and class.
It would be in the spirit of this course to derive the posterior distribution of P [C|F1, F2, F3]. However I
did not go through that in class and I doubt most people do Naïve Bayes classifiers that way.
So instead let’s use these priors less ambitiously — as a way to obtain maximum a posterior (MAP)
estimates.
Using pseudo-counts and the data counts of 5 class A out of 9 samples,
we can compute the MAP estimate of P [C = A] = 5+0.5

9+1 = 0.55.
Likewise the MAP estimate of P [F |C] is given by:

MAP estimate P [Fi|Cj ] =
N(Fi, Cj) + 0.5

N(Cj) + 3 · 0.5
=

2N(Fi, Cj) + 1

2N(Cj) + 3

Where N(X) denotes the count of X in the data. The following table summarizes those counts.

feature F1 feature F2 feature F3

class A class B class A class B class A class B
good okay good okay good okay good okay good okay good okay

N(Fi|Cj) 1 1 2 2 1 3 1 2 3 2 0 1

P [Fi|Cj ]
3
13

3
13

5
11

5
11

3
13

7
13

3
11

5
11

7
13

5
13

1
11

3
11

Where N [X] denotes the number of X observed in the data.
And P [bad|C] can be computed as 1− P [good|C]− P [okay|C].
Here I list an example to demonstrate that we have defined enough parameters.

P [C = A|(good, bad, okay)] ∝ P [C = good] P [F1 = good|A] P [F2 = bad|A] P [F3 = okay|A]

= 0.55 · 3

13

13− 3− 7

13

5

13
= 0.55 · 3 · 3 · 5

133
=

0.55 · 45
133

P [C = B|(good, bad, okay)] ∝ P [C = bad] P [F1 = good|B] P [F2 = bad|B] P [F3 = okay|B]

= 0.45 · 5

11

11− 3− 5

11

3

11
= 0.45 · 5 · 3 · 3

113
=

0.45 · 45
113

So,
P [C = A|(good, bad, okay)]
P [C = B|(good, bad, okay)]

=
0.55 · 45 · 113

0.45 · 45 · 133
=

114

9 · 133
=

14641

19773
= 0.7405

And therefore,

P [C = A|(good, bad, okay)]≈
0.7405

1 + 0.7405
≈ 0.425

Yes, this is too much arithmetic for a closed calculator exam.
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Naïve Bayes Classifer

Solution: Partial credit solution. This is a solution in which the effect of the prior is completely
neglected.
If someone explicitly wrote that they were using an improper BetaDist(0, 0) prior, I might have allowed
that, but no one did. So I have assumed students with an answer like the one below simply neglected
the notion of priors.
Let’s start by writing the defining equation for Naïve Bayes

P [C|F1, F2, F3]∝P [C] P [F1, F2, F3|C]≈ P [C] P [F1|C] P [F2|C] P [F3|C]

So the parameters needed are P [C], and the three P [F |C] terms.
5 out of 9 data samples are of class A, so without pseudo-counts, P [C = A] = 5

9 , and P [C = B] = 4
9 .

Likewise the estimates of P [F |C] are also just taken directly from counts in the dataset.

no-pseudocount estimate P [Fi|Cj ] =
N(Fi, Cj)

N(Cj)

Where N(X) denotes the count of X in the data. The following table summarizes those counts.

feature F1 feature F2 feature F3

class A class B class A class B class A class B
good okay good okay good okay good okay good okay good okay

N(Fi|Cj) 1 1 2 2 1 3 1 2 3 2 0 1

P [Fi|Cj ]
1
5

1
5

2
4

2
4

1
5

3
5

1
4

2
4

3
5

2
5

0
4

1
4

Where N [X] denotes the number of X observed in the data.
And P [bad|C] can be computed as 1− P [good|C]− P [okay|C].
Here I list an example to demonstrate that we have defined enough parameters.

P [C = A|(good, bad, okay)] ∝ P [C = good] P [F1 = good|A] P [F2 = bad|A] P [F3 = okay|A]

=
5

9
· 1
5

5− 1− 3

5

2

5
=

5

9
· 1 · 1 · 2

53
=

2

9 · 52

P [C = B|(good, bad, okay)] ∝ P [C = bad] P [F1 = good|B] P [F2 = bad|B] P [F3 = okay|B]

=
4

9
· 2
4

4− 1− 2

4

1

4
=

4

9
· 2 · 1 · 1

43
=

2

9 · 42
=

So,
P [C = A|(good, bad, okay)]
P [C = B|(good, bad, okay)]

=
2

9·52
2

9·42
=

42

52
=

16

25
= 0.64

And therefore,

P [C = A|(good, bad, okay)] =
16
25

1 + 16
25

=
16
25

25+16
25

=
16

41
≈ 0.390
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