Final. Closed book and calculators not allowed. Answers may include $e^{2}, \sqrt{ }$, etc. but simplfy when possible.

Your Name：

Problem 1.

Recall that a Gaussian prior is conjugate to the mean of a Gaussian distribution．
Given：
1．a random variable X is distributed normally given its mean，i．e．$X \mid \mu \sim N(\mu, 1) 2$ ．our prior belief regarding μ is a standard normal：$\mu \sim \mathcal{N}(0,1)$
3．we have one data point $x_{1}=10$ ．
Question：what is the posterior distribution of μ after observing x_{1} ？

1a．Informally justify your answer（可以用中文）

1b．（Challenging？）Mathematically prove your answer．

Your Name:

Problem 2.

Imagine rolling a (not necessarily fair) 4-sided die, numbered $\{1,2,3,4\}$.
Given:

1. prior: Your prior belief on the probability of each side is $\operatorname{Dirichlet}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.
2. data: You roll the die twice, with getting a '1' and ' 3 '.

Question:

2a. What is the posterior distribution over $\{1,2,3,4\}$ after observing the data?

2b. What is the probability that the next die roll yields a 3 ?

Your Name: \qquad
Problem 3.

The above graph is a Bayesian network (aka Belief Network, or probabilistic graphical model). Consider the $\binom{7}{3}=35$ possible triples of nodes $(\mathrm{A}, \mathrm{B}, \mathrm{C}) ;(\mathrm{A}, \mathrm{B}, \mathrm{D}) ; \ldots ;(\mathrm{E}, \mathrm{F}, \mathrm{G})$.

Question:

List the triples $(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ for which X and Y are conditionally independent given Z .
Where $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \in\{\mathrm{A}, \ldots, \mathrm{G}\}, \mathrm{X} \neq \mathrm{Y}, \mathrm{X} \neq \mathrm{Z}, \mathrm{Y} \neq \mathrm{Z}$.

Your Name: \qquad

Problem 4.

This is a coin flipping problem.
Recall a beta distribution is defined as:

$$
\operatorname{BetaDist}(a, b) \stackrel{\text { def }}{=} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} p^{a-1}(1-p)^{b-1}
$$

Given:

1. the data is a single coin toss, yielding "heads".
2. a beta distribution $\operatorname{BetaDist}(a, b)$ was used as a prior.
3. the posterior distribution is as plotted above.

Question:

What were the parameters (a, b) of the beta distribution prior?

Your Name:

Problem 5.

Dataset:

Class	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$
A	good	good	okay
A	bad	bad	good
A	bad	okay	okay
A	okay	okay	good
A	bad	okay	good
B	good	okay	okay
B	okay	okay	bad
B	okay	good	bad
B	good	bad	bad

Question:

Specify a Naïve Bayes classifer based on the above dataset.
Your classifier should provide enough information to compute the numerical value of $\mathrm{P}\left[\right.$ class $\left.=\mathrm{A} \mid \mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}\right]$ for all 9 combinations of $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}\right) \in\{$ good, okay, bad $\}$.
Explicitly state all priors used.

