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3-state coin flipping HMM

Name & student ID:

Problem 1.
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Emission probabilities
of {H,T} for the 3 states.

Suppose the model starts in 𝑍1 or 𝑍2 each with 50% probability,
in other words: P[𝑆1 = 𝑍1] = P[𝑆2 = 𝑍2] = 0.5.

Define: α𝑖𝑗 ≝ P[𝑋1..𝑖, 𝑆𝑖 = 𝑍𝑗|𝜆] 𝛽𝑖𝑗 ≝ P[𝑋𝑖+1..𝑛|𝑆𝑖 = 𝑍𝑗, 𝜆]
with 𝜆 meaning the HMM model and its parameter values described above.

Problem 1a. Formally prove that:

P[𝑋1..𝑛, 𝑆𝑖 = 𝑍𝑗|𝜆] = α𝑖𝑗𝛽𝑖𝑗

Explicitly state any assumptions used, including assumptions that are part of the defini-
tion of a Hidden Markov Model. I’m looking for a formal proof based mainly on symbolic
manipulation.

Solution: Step 1. Note that all quantities are conditioned on 𝜆, so we can omit it.
We can also simplify notation by writing just 𝑆𝑖 with some value implicit, instead of
𝑆𝑖 = 𝑍𝑗. Restating the problem with 𝜆 omitted and expanding α𝑖𝑗, 𝛽𝑖𝑗 according to
their definitions we obtain:

Proof the following equality:

P[𝑋1..𝑖, 𝑆𝑖] P[𝑋𝑖+1..𝑛|𝑆𝑖] = P[𝑋1..𝑛, 𝑆𝑖]
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3-state coin flipping HMM

  P[𝑋1..𝑖, 𝑆𝑖] P[𝑋𝑖+1..𝑛|𝑆𝑖]
= P[𝑋1..𝑖, 𝑆𝑖] P[𝑋𝑖+1..𝑛|𝑆𝑖, 𝑋1..𝑖] Markov Assumption
= P[𝑋1..𝑖, 𝑆𝑖, 𝑋𝑖+1..𝑛] P[𝐴,𝐵] P[𝐶|𝐴, 𝐵] = P[𝐴,𝐵, 𝐶]
= P[𝑋1..𝑛, 𝑆𝑖] ✓

In words, the Markov assumption is that given an HMM and trying to predict the
future past time 𝑖, knowing the state of the HMM at time 𝑖 (i.e. 𝑆𝑖) is the best you
can do. You get no extra information by also considering 𝑋1..𝑖. (Or course if you do
not know 𝑆𝑖, 𝑋1..𝑖 can help you predict the future because it gives you information
about 𝑆𝑖).
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3-state coin flipping HMM

Name & student ID:

Problem 1b.
Fill in the values missing from this table.

i 1 2 3 4 5 6
𝑋 T H H H T T
α𝑖1 0.1500 0.0910 0.0464 0.0230 0.0049 0.0015
α𝑖2 0.4000 0.0620 0.0134 0.0045 0.0079 0.0061
α𝑖3 0.0000 0.0550 0.0373 0.0209 0.0111 0.0057
𝛽𝑖1 0.0415 0.0792 0.1463 0.2406 0.4400 1.0000
𝛽𝑖2 0.0176 0.0387 0.1072 0.4506 0.6900 1.0000
𝛽𝑖3 0.0328 0.0663 0.1348 0.2724 0.5100 1.0000

Question. Given 𝑋 = THHHTT, what is the expected number of time steps the model spent in
state 𝑍2? In other words:

𝑛
∑
𝑖=1

P[𝑆𝑖 = 𝑍2|𝑋, 𝜆]

Solution: The sum be computed using

P[𝑆𝑖 = 𝑍2|𝑋, 𝜆] = P[𝑆𝑖 = 𝑍2, 𝑋, 𝜆]
P[𝑋, 𝜆]

P[𝑋, 𝜆] = ∑
𝑗

α𝑛𝑗 = α61 + α62 + α63 ≈ 0.0015 + 0.0061 + 0.0057 = 0.0133

∀𝑖 P[𝑆𝑖 = 𝑍2, 𝑋, 𝜆] = α𝑖2𝛽𝑖2

∑
𝑖

P[𝑆𝑖 = 𝑍2|𝑋, 𝜆] = (0.4000)(0.0176) + (0.0620)(0.0387) + (0.0134)(0.1072)+

(0.0045)(0.4506) + (0.0079)(0.6900) + (0.0061)(1.0000) = 0.02445458

P[𝑆𝑖 = 𝑍2|𝑋, 𝜆] = 0.02445458
0.0133 ≈ 1.83869
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Counting Number of Alignments

Name & student ID:

Problem 2.

In the problem we consider the number of ways to align to sequences 𝑋 and 𝑌 of lengths 𝑛 and
𝑚 respectively. Let 𝑥 and 𝑦 denote some character in 𝑋 and 𝑌 respectively (𝑥 and 𝑦 could be
the same or different).

The basic rule is there are three kinds of columns.

(mis)match: x gap in X: - gap in Y: x
y y y

Sometimes alignments with alternating gaps are disallowed. By “alternating gaps” I mean a
column with a gap in X immediately following a column with a gap in Y. In other words an
alignment containing

-x or x-
y- -y

Has an alternating gap.

Problem 2a.
Let 𝐶(𝑛, 𝑚) denote the number of ways to align sequences of length 𝑛 and 𝑚, allowing alter-
nating gaps in the alignment. You can confirm by hand that 𝐶(1, 1) = 3.

Stipulate the recursive relations and base cases necessary to use dynamic programming to
compute 𝐶(𝑛,𝑚) for positive integers 𝑛, 𝑚.

Use this method to compute 𝐶(3, 7). Make a table to show your work.

Solution: For a base case, the simplest approach is 𝑖 ≧ 0, 𝐶(𝑖, 0) = 𝐶(0, 𝑖) = 1.

If counting alignments of empty sequences seems strange, one can use the recurrence:

∀𝑖>1𝐶(1, 𝑖) = 1 + 1 + 𝐶(1, 𝑖 − 1)

which follows by considering three cases of the first column of the alignments

case 1 0 ------- one possible alignment
- 0 ... i

case 2 0 ------ one possible alignment
0 ... i

case 3 - 0----- 𝐶(1, 𝑖 − 1)
0 ... i possible alignments
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Counting Number of Alignments

The recurrence is

𝐶(𝑖, 𝑗) = 𝐶(𝑖 − 1, 𝑗) + 𝐶(𝑖, 𝑗 − 1) + 𝐶(𝑖 − 1, 𝑗 − 1)

For positive integers 𝑖 and 𝑗.

Using this method one may compute 𝐶(3, 7) = 575.
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Counting Number of Alignments

Name & student ID:

Problem 2b.
Let 𝐷(𝑛,𝑚) denote the count the number of ways to align sequences of length 𝑛 and 𝑚,
disallowing alternating gaps in the alignment. Consider 𝐷(𝑛, 0) = 𝐷(0,𝑚) = 1. You can
confirm by hand that 𝐷(1, 1) = 1.

Stipulate the recursive relations and base cases necessary to use dynamic programming to
compute 𝐷(𝑛,𝑚) for positive integers 𝑛, 𝑚. Hint, you can use the same technique as that used
for affine gap cost alignment.

Use this method to compute 𝐷(3, 7). Make a table to show your work.

Solution: We split into cases. Let 𝑀(𝑖, 𝑗) be the number of alignments of sequences of
lengths 𝑖 and 𝑗 which end in a (mis)match, and 𝐺(𝑖, 𝑗) be the number of alignments which
end with a gap in the second sequence.

The recurrence is:

𝑀(𝑖, 𝑗) = 𝑀(𝑖 − 1, 𝑗 − 1) + 𝐺(𝑖 − 1, 𝑗 − 1) + 𝐺(𝑗 − 1, 𝑖 − 1)
𝐺(𝑖, 𝑗) = 𝐺(𝑖 − 1, 𝑗) + 𝑀(𝑖 − 1, 𝑗)

For positive integers 𝑖 and 𝑗.

For a base cases: 𝐺(0, 0) = 0, 𝑖 > 0; 𝐺(𝑖, 0) = 1, 𝑗 ≧ 0 𝐺(1, 𝑗) = 1.
𝑗 > 0; 𝑀(1, 𝑗) = 𝑀(𝑗, 1) = 1.

And for the answer: 𝐷(𝑖, 𝑗) = 𝑀(𝑖, 𝑗) + 𝐺(𝑖, 𝑗)

This method can be used to compute 𝐷(3, 7) = 55. The alignment paths are enumerated
on the next page.

Exam, solutions by Paul Horton © 2023



Counting Number of Alignments

0123456 0123456 0123456- 0123456 012-3456 0123456 0123456
--0-1-2 --0-12- --0---12 --0--12 --012--- --012-- --01--2

0123456 0123456- 01234-56 0123456 0123456- 0123456- 012345-6
--01-2- ----0-12 ----012- ----012 ------01 -----012 -----012

0123456 0123456 0123-456 0123456- 0123456 0123456 0123456
---01-2 ---012- ---012-- ---0--12 ---0-12 -01-2-- -01---2

0123456 0123456 01-23456 0123456 0123456 0123456- 0123456
-01--2- -012--- -012---- -0--1-2 -0--12- -0----12 -0---12

0123456 0123456 0123456 0123456 0123456 0123456 0123456
-0-12-- -0-1--2 -0-1-2- 0-1-2-- 0-1---2 0-1--2- 0-12---

0123456 0123456 0123456- 0123456 0123456 0123456 0123456
0---1-2 0---12- 0-----12 0----12 0--12-- 0--1--2 0--1-2-

0-123456 0123456 0123456 0123456 0123456 0123456 --012345
012----- 012---- 01--2-- 01----2 01---2- 01-2--- 012-----

-0123456 -0123456 -0123456 -0123456 -0123456 -0123456
012----- 01--2--- 01----2- 01-----2 01---2-- 01-2----
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Neighbor Joining Phylogenetic Tree Inference

Name & student ID:

B C D E
16 16 14 10 A

2 4 8 B
4 8 C

6 D

Problem 3.
Use the Saitou & Nei Neighbor joining algorithm to infer a plausible tree for species A,B,C,D,E
(topology & edge lengths) from the distance matrix shown. Use symbols F,G,H to denote
internal nodes.

Solution: A straightforward solution is to simply apply the neighbor joining computations
with 𝑟 and 𝐷.

First we compute 𝑟, according to:

𝑟𝑖 ≝ Σ𝑗 𝑑𝑖𝑗
ℓ − 2 ℓ = |{A, B, C, D, E}| = 5

𝑟A = 1
3(16 + 16 + 14 + 10) = 182

3
𝑟B = 1

3(16 + 2 + 4 + 8) = 10
𝑟C = 1

3(16 + 2 + 4 + 8) = 10
𝑟D = 1

3(14 + 4 + 4 + 6) = 91
3

𝑟E = 1
3(10 + 8 + 8 + 6) = 102

3

Then compute normalized distances 𝐷𝑖𝑗 accoding to:

𝐷𝑖𝑗 = 𝑑𝑖𝑗 − 𝑟𝑖 − 𝑟𝑗

B C D E
16 − 182

3 − 10 16 − 182
3 − 10 14 − 182

3 − 91
3 10 − 182

3 − 102
3 A

2 − 10 − 10 4 − 10 − 91
3 8 − 10 − 102

3 B
4 − 10 − 91

3 8 − 10 − 102
3 C

6 − 91
3 − 102

3 D

B C D E
−122

3 −122
3 −14 −191

3 A
−18 −151

3 −122
3 B

−151
3 −122

3 C
−14 D
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Neighbor Joining Phylogenetic Tree Inference

The smallest (most negative) normalized distance is 𝐷(A, E) = −191
3 .

So let internal node F be the parent of A and E; with distance from those child nodes of:

𝑑(A, F) = 1
2(𝑑AE + rA − rE) = 1

2(10 + 182
3 − 102

3) = 9
𝑑(E, F) = 1

2(𝑑AE + rE − rA) = 1
2(10 + 102

3 − 182
3) = 1

The (unnormalized) distance from the remaining leafs 𝑖 ∈ 𝑙{B, C, D} to F, follow:

𝑑(F, B) = 1
2(𝑑AB + 𝑑EB − 𝑑AE) = 1

2(16 + 8 − 10) = 14

This answer unfinished...

Exam, solutions by Paul Horton © 2023



DNA Dinucleotide Order Markov Model

Name & student ID:

Problem 4.

Background A zero order (plain) Markov model for single stranded DNA generates DNA
sequences 𝑋 = 𝑋1...𝑋𝑛 under the assumption that P[𝑋𝑖+1|𝑋1..𝑖] = P[𝑋𝑖+1]. Since P[a] +
P[c] + P[g] + P[𝑡] ≡ 1, the model has 3 degrees of freedom. Given a suitable prior distribution
(don’t worry about it for this question) and the length 𝑛 of a training sequence 𝑋; the frequency
of three nucleotides (a, c, and g for example) is sufficient (and minimal) information needed to
train the model.

Problem 4a.
A 1st order (plain) Markov model for single stranded DNA generates DNA sequences 𝑋 =
𝑋1...𝑋𝑛 under the assumption that P[𝑋𝑖+1|𝑋𝑖] = P[𝑋𝑖+1|𝑋1..𝑖].

Given a suitable prior distribution and the length 𝑛 of a training sequence, list a sufficient (and
as minimal as possible) set of statistics on from 𝑋 which can be used to train the model.

Solution: To train a 1st order model we need to know the frequencies of all dimers and
monomers. There are 4x4=16 dimers, with the constraint that their probabilities must sum
to one; so the dimer probabilities have at most 16-1=15 degrees of freedom.

One could say there are 12 major degrees of freedom and 3 minor ones. The 12 major
ones are the conditional probabilities: P[𝑋𝑖+1|𝑋𝑖] there are 4x4= 16 of these with 4x3=12
degrees of freedom due to the sum-to-one constraints:

for 𝑏 ∈ a, c, g, t; P[𝑏a|𝑏.] + P[𝑏c|𝑏.] + P[𝑏g|𝑏.] + P[𝑏t|𝑏.] ≡ 1

Where 𝑏. denotes base 𝑏 followed by any other base.

The 3 minor degrees of freedom come from the need to stipulate the probabilities of the
first base in the sequence

for 𝑏 ∈ a, c, g, t; P[𝑋0 = a] + P[𝑋0 = c] + P[𝑋0 = g] + P[𝑋0 = t] ≡ 1

These parameters might be considered minor because they only affect the probability of
the base at the sequence start, and unless the start of the sequence is special, one might
reasonably use the marginal probability of the dimer frequences to estimate them.

for 𝑏 ∈ a, c, g, t; P[𝑋0 = 𝑏] ⟵ ∑
𝑏′∈{a,c,g,t}

P[𝑏|𝑏𝑏′]
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2-Stranded DNA Dinucleotide Order Markov Model

Name & student ID:

Problem 4b.
A 1st order (plain) Markov model for double stranded DNA generates double stranded DNA
sequences 𝐷 = 𝐷1...𝐷𝑛. Where each element 𝐷𝑖 represents a pair from the set:
{a = t, c ≡ g, g ≡ c, t = a}. The assumption is that P[𝐷𝑖+1|𝐷𝑖] = P[𝐷𝑖+1|𝐷1..𝑖].

So for example 𝐷 might be:

gataca
ctatgt

One strand, gataca, happens to be written on top, but often this is arbitrary. In that case the
opposite strand tgtatc should be equivalent for the purpose of training a Markov model.

Let 𝐷 be double stranded data we want to train on. Assume we train on a sequence 𝑋 which is
one of the two strands of 𝐷. We constrain our result to be the same no matter which strand is
used. So in the example above 𝑋 = gataca or 𝑋 = tgtatc should both give the same result.

Given a suitable prior distribution and the length 𝑛 of the training sequence; list a sufficient
(and as minimal as possible) set of statistics on from 𝑋 which can be used to train the model.
Explain as necessary to demonstrate your reasoning.
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2-Stranded DNA Dinucleotide Order Markov Model

Solution: Note that for double stranded DNA dimers which form reverse complementary
pairs always appear together; but some dimers are “DNA palindromic”, in the sense that
they are equal to their reverse complement.

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt Forw 5'→3'
tt tg tc ta gt gg gc ga ct cg cc ca at ag ac aa Back 3'→5'
tt gt ct at tg gg cg ag tc gc cc ac ta ga ca aa Back 5'→3'

The four dimers at, cg, gc, ta are DNA palindromes. The other 12 dimers are not, and
can be grouped into 6 pairs of equal probability.

P[aa] = P[tt] P[ac] = P[gt] P[ag] = P[ct]
P[ca] = P[tg] P[cc] = P[gg] P[ga] = P[tc]

Implying P[aa|a.] P[a] = P[tt|t.] P[t], etc.

In terms of conditional probabilities we can use sum-to-one constraints to write the condi-
tional probabilities of the 4 DNA palindrome dimers in terms of the conditional probabilities
of the non-palindromic dimers.

P[at|a.] = 1 − P[aa|a.] − P[ac|a.] − P[ag|a.]
P[cg|c.] = 1 − P[ca|c.] − P[cc|c.] − P[ct|c.]
P[gc|g.] = 1 − P[ga|g.] − P[gg|g.] − P[gt|g.]
P[ta|t.] = 1 − P[tc|t.] − P[tg|t.] − P[tt|t.]

Thus the conditional probabilities of the 6 non-palindromic dimer equivalence classes are
enough to determine conditional probabilities for all the dimers.

Thus there are 6 degrees of freedome assuming we use the dimer frequencies to estimate the
probability of the first base of the sequence.
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