Genome Informatics mid-term exam, fall 2023.

November 23, 2023

Name \& student ID:

Problem 1.

Suppose the model starts in Z_{1} or Z_{2} each with 50% probability, in other words: $\mathrm{P}\left[S_{1}=Z_{1}\right]=\mathrm{P}\left[S_{2}=Z_{2}\right]=0.5$.

Define:

$$
\alpha_{i j} \stackrel{\text { def }}{=} \mathrm{P}\left[X_{1 . . i}, S_{i}=Z_{j} \mid \lambda\right] \beta_{i j} \stackrel{\text { def }}{=} \mathrm{P}\left[X_{i+1 . . n} \mid S_{i}=Z_{j}, \lambda\right]
$$

with λ meaning the HMM model and its parameter values described above.

Problem 1a. Formally prove that:

$$
\mathrm{P}\left[X_{1 . . n}, S_{i}=Z_{j} \mid \lambda\right]=\alpha_{i j} \beta_{i j}
$$

Explicitly state any assumptions used, including assumptions that are part of the definition of a Hidden Markov Model. I'm looking for a formal proof based mainly on symbolic manipulation.

Name \& student ID: \qquad

Problem 1b.

Fill in the values missing from this table.

i	1	2	3	4	5	6
X	T	H	H	H	T	T
$\mathrm{\alpha}_{i 1}$	0.1500	0.0910	0.0464	0.0230	0.0049	0.0015
$\mathrm{\alpha}_{i 2}$	0.4000	0.0620	0.0134	0.0045	0.0079	0.0061
$\mathrm{\alpha}_{i 3}$	0.0000	0.0550	0.0373	0.0209	0.0111	0.0057
$\beta_{i 1}$	0.0415	0.0792	0.1463	0.2406	0.4400	1.0000
$\beta_{i 2}$	0.0176	0.0387	0.1072	0.4506	0.6900	1.0000
$\beta_{i 3}$	0.0328	0.0663	0.1348	0.2724	0.5100	1.0000

Question. Given $X=$ THHHTT, what is the expected number of time steps the model spent in state Z_{2} ? In other words:

$$
\sum_{i=1}^{n} \mathrm{P}\left[S_{i}=Z_{2} \mid X, \lambda\right]
$$

Counting Number of Alignments

Name \& student ID:

Problem 2.

In the problem we consider the number of ways to align to sequences X and Y of lengths n and m respectively. Let x and y denote some character in X and Y respectively (x and y could be the same or different).

The basic rule is there are three kinds of columns.

(mis)match: | x | gap in $\mathrm{X}:$ | $-\quad$ gap in $\mathrm{Y}:$ | x |
| ---: | ---: | ---: | ---: |
| y | | y | |

Sometimes alignments with alternating gaps are disallowed. By "alternating gaps" I mean a column with a gap in X immediately following a column with a gap in Y. In other words an alignment containing

$-x$	or	$x-$
$y-$		$-y$

Has an alternating gap.

Problem 2a.

Let $C(n, m)$ denote the number of ways to align sequences of length n and m, allowing alternating gaps in the alignment. You can confirm by hand that $C(1,1)=3$.

Stipulate the recursive relations and base cases necessary to use dynamic programming to compute $C(n, m)$ for positive integers n, m.

Use this method to compute $C(3,7)$. Make a table to show your work.

Counting Number of Alignments

Name \& student ID:

Problem 2b.

Let $D(n, m)$ denote the count the number of ways to align sequences of length n and m, disallowing alternating gaps in the alignment. Consider $D(n, 0)=D(0, m)=1$. You can confirm by hand that $D(1,1)=1$.

Stipulate the recursive relations and base cases necessary to use dynamic programming to compute $D(n, m)$ for positive integers n, m. Hint, you can use the same technique as that used for affine gap cost alignment.

Use this method to compute $D(3,7)$. Make a table to show your work.

Neighbor Joining Phylogenetic Tree Inference

Name \& student ID:

\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	
16	16	14	10	\mathbf{A}
	2	4	8	\mathbf{B}
		4	8	\mathbf{C}
			6	\mathbf{D}

Problem 3.

Use the Saitou \& Nei Neighbor joining algorithm to infer a plausible tree for species A,B,C,D,E (topology \& edge lengths) from the distance matrix shown. Use symbols $\mathbf{F}, \mathbf{G}, \mathbf{H}$ to denote internal nodes.

Name \& student ID:

Problem 4.

Background A zero order (plain) Markov model for single stranded DNA generates DNA sequences $X=X_{1} \ldots X_{n}$ under the assumption that $\mathrm{P}\left[X_{i+1} \mid X_{1 . .}\right]=\mathrm{P}\left[X_{i+1}\right]$. Since $\mathrm{P}[\mathrm{a}]+$ $\mathrm{P}[\mathrm{c}]+\mathrm{P}[\mathrm{g}]+\mathrm{P}[t] \equiv 1$, the model has 3 degrees of freedom. Given a suitable prior distribution (don't worry about it for this question) and the length n of a training sequence X; the frequency of three nucleotides (a, c, and g for example) is sufficient (and minimal) information needed to train the model.

Problem 4a.

A 1st order (plain) Markov model for single stranded DNA generates DNA sequences $X=$ $X_{1} \ldots X_{n}$ under the assumption that $\mathrm{P}\left[X_{i+1} \mid X_{i}\right]=\mathrm{P}\left[X_{i+1} \mid X_{1 . . i}\right]$.

Given a suitable prior distribution and the length n of a training sequence, list a sufficient (and as minimal as possible) set of statistics on from X which can be used to train the model.

2-Stranded DNA Dinucleotide Order Markov Model

Name \& student ID:

Problem 4b.

A 1st order (plain) Markov model for double stranded DNA generates double stranded DNA sequences $D=D_{1} \ldots D_{n}$. Where each element D_{i} represents a pair from the set: $\{\mathrm{a}=\mathrm{t}, \mathrm{c} \equiv \mathrm{g}, \mathrm{g} \equiv \mathrm{c}, \mathrm{t}=\mathrm{a}\}$. The assumption is that $\mathrm{P}\left[D_{i+1} \mid D_{i}\right]=\mathrm{P}\left[D_{i+1} \mid D_{1 . . i}\right]$.

So for example D might be:

```
gataca
```

ctatgt
One strand, gataca, happens to be written on top, but often this is arbitrary. In that case the opposite strand tgtatc should be equivalent for the purpose of training a Markov model.

Let D be double stranded data we want to train on. Assume we train on a sequence X which is one of the two strands of D. We constrain our result to be the same no matter which strand is used. So in the example above $X=$ gataca or $X=$ tgtatc should both give the same result.

Given a suitable prior distribution and the length n of the training sequence; list a sufficient (and as minimal as possible) set of statistics on from X which can be used to train the model. Explain as necessary to demonstrate your reasoning.

