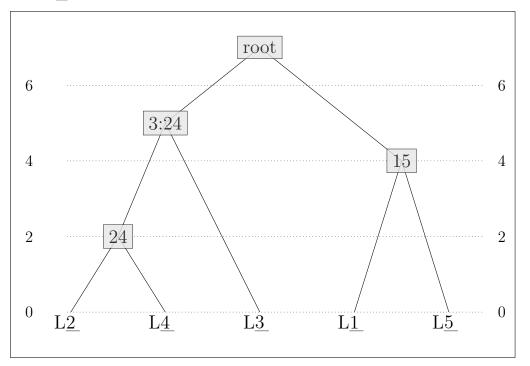
					inferred nodes					
	L2	L3	24	15	3:24					
L1	14	14	14	82	14	Х	14			
	L2	10	41	14	Х	Х	Х			
		L3	10	14	10_{3}	14	Х			
			L4	14	Х	Х	Х			
				L5	14	Х	Х			
					24	14	Х			
						15	14			
							3:24			

Problem 1.

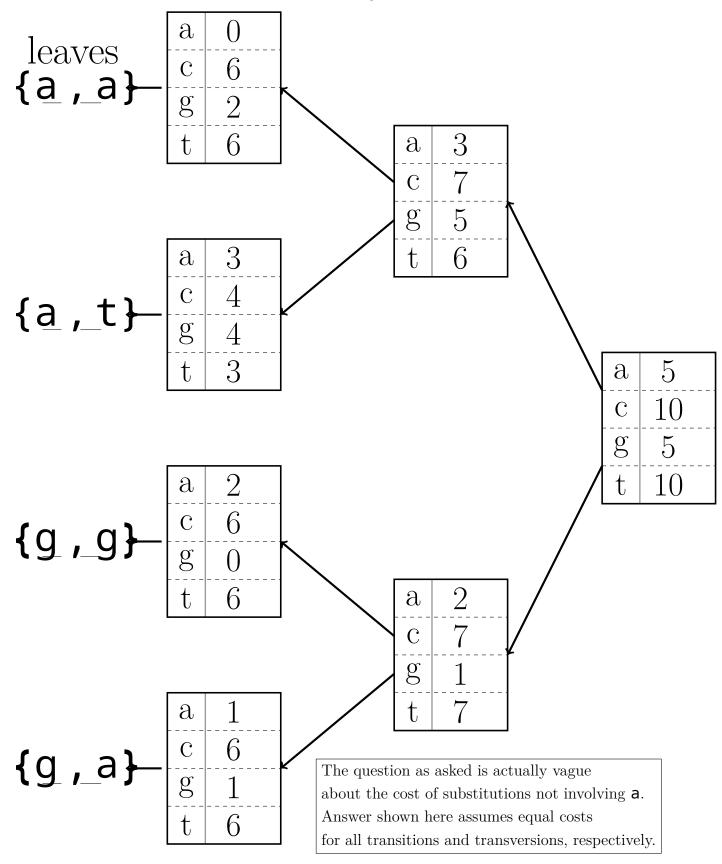
Problem 1a. Fill in all relevant distances computed by UPGMA.


Since this is a closed book test; let me remind you that UPGMA infers rooted trees assuming a constant speed of evolution.

The subscripts on distances indicate the order of merging by UPGMA, for example the 4_1 for the distance between L2 and L4 indicates that L2 and L4 are merged in the first step.

UPGMA tree inference

Problem 1b. Sketch the UPGMA inferred tree in box below.


Sketch the tree inferred by UPGMA, with the leaves at height 0 and inferred ancestor nodes at the appropriate height. Indicate leaves by filling in "L1", "L2" etc. where there is a "L_". Show the root node as "root".

Problem 1c. Is this UPGMA tree reliable? State your reasons.

The tree is reliable because the distances given are ultrametric.

Weighted Parsimony

Problem 2. Fill in the minimal costs for assuming each nucleotide in the blanks below.

Affine Gap Alignment

Proble	em 3.

		С	G	Т	А	Т	Т	G
		-3	-4	-5	-6	-7	-8	-9
	0							
C	-3	× ×	-1 ×	-2 ×	-3 ×	-4 ×	$-5 \times$	-6 -12
		+2	-5	-5	-7	-7	-8	-10
C	-4	× -1	-8 -8	+1 -8	0 -10	-1 -9	+2-11	+3-13
G		-5	+4	-3	-4	-5	-6	-3
Т	-5	× -2	-8 -1	-6 -6	+3 -7	+2 -8	-1 -9	-2 0
		-5	-3	+6	-1	+2	+1	0
С	-6	× -3	-6 -2	-7 +3	-5 -4	+1 +1	0 -2	-1 -1
		-3	-4	-2	+4	+2	+1	-1
C	-7	× -4	-11 -3	-4 +2	-5 +1	-1 0	0 -2	-1 -2
G		-8	-1	-4	+2	+2	0	+3

According to instructions on the following page. **Problem 3a**. Fill in this dynamic programming table.

Note that some scores could be better (higher) if adjacent alternating gaps were allowed. For example, cell representing aligning CGT- with CG.

Alternating adjacent	But we are forced to use:
gap alignment:	
CGT-	CGT-
CG	CG
	2 x1
*2 1	

Affine Gap Alignment

Problem 3b. List any globally optimal alignments (here) and show traceback arrows on the dynamic table on the first page.

Solution:					
CGTATTG	CGTATTG				
CGTCG	CGTCG				
12*x*	*12x*				
Either of the two alignments above have score of: $(4)(2) - 1 - 3 - 1 = 3$.					

		С	G	Т	А	Т	Т	G
	0	-3	-4	-5	-6	-7	-8	-9
	0							
C	-3	-6 -6	-1 -7	-2 -8	-3 -9	-4 - 10	-5-11	-6-12
		+2	-5	-5	-7	-7	-8	-10
G	-4	-7 -1	-8 -4	+1-5	0 -6	-1 -7	+2-8	+3-9
G		-5	+4	-3	-4	-5	-6	-3
Т	-5	-8 -2	-5 -1	-4 -2	+3-3	+2-4	-1 -1	-2 0
		-5	-3	+6	-1	+2	+1	0
C	-6	-9-3	-6 -2	-5 + 3	0 -1	+1+1	0 -2	-1 -1
		-3	-4	-2	+4	+2	+1	-1
G	-7	-10-4	-7 -3	-4+2	-5 + 1	-1 0	0 -2	-1 -2
G		-8	-1	-4	+2	+2	0	+3

Shown above; the dynamic programming table allowing for alternating adjacent gaps. Notice that some gap state scores increase, but the overall maximum remains 3.

As an aside; note that the difference in scores between adjacent cells in the dynamic programming table becomes more homogeneous (often differing by 1 for example). Algorithms (outside the scope of this question) have been designed which take advantage of this regularity.

Scoring Parameters

Alignment scoring parameters: match score +2; mismatch score transition -1, transversion -2. Gap open score -3, gap extend score -1.

A transition is a substitution $a \leftrightarrow g$ or $c \leftrightarrow t$, other single nucleotide substitutions are transversions.

For example, the alignment:

With 4 matches, 1 transition, 1 transversion, 1 gap opening, & 2 gap extensions, would score: (4)(2) - 1 - 2 - 3 - (1)(2) = 0

Problem 3c. (On the next page) List the recursive relationships needed to efficiently compute a minimal cost global alignment with affine gap costs. you may assume the scoring parameters penalize gaps strongly enough that an optimal alignment never has alternating adjacent gaps.

In other words: $\begin{array}{c} x-x & \text{alignment like this never optimal} \\ yy- \end{array}$

Notation

Let $x = x_1, \dots, x_n, y = y_1, \dots, y_m$ denote the sequences.

Note that the indices start from 1; so that 0 can be used as an index to represent the empty string "before" the start of a sequence.

Let $m(\mathbf{a}, \mathbf{b})$ indicate the score of aligning characters \mathbf{a} and \mathbf{b} together (a match when $\mathbf{a}=\mathbf{b}$, otherwise a mismatch), Let g_o indicate gap open, and g_e indicate gap extension costs.

Continued next page...

Additional Notation

For integers i, j such that $0 < i \leq n, 0 < j \leq m$

M(i,j) denotes the min. cost alignment of $x_{1\dots i}$ and $y_{1\dots j};$ ending with x_i aligned to $y_j.$

X(i,j) denotes the min. cost alignment of $x_{1\dots i}$ and $y_{1\dots j};$ ending with x_i aligned to a gap.

Y(i,j) denotes the min. cost alignment of $x_{1\dots i}$ and $y_{1\dots j};$ ending with y_j aligned to a gap.

Base Cases

 $\begin{array}{l} \mbox{Let } M(0,0)=0, \, \forall k>0 M(0,k)=M(k,0)=\infty \\ \mbox{Let } X(0,0)=Y(0,0)=\infty, \, \forall k>0 M(0,k)=M(k,0)=g_o+(k-1)(g_e) \end{array} \end{array}$

Recurrences

$$\begin{split} M(i,j) &= m(x_i,y_j) + \max \begin{cases} M(i-1,j-1) \\ X(i-1,j-1) \\ Y(i-1,j-1) \end{cases} \\ X(i,j) &= \max \begin{cases} M(i-1,j) + g_o \\ X(i-1,j) + g_e \end{cases} \quad Y(i,j) &= \max \begin{cases} M(i,j-1) + g_o \\ Y(i,j-1) + g_e \end{cases} \end{split}$$

Global Alignment Score

The global alignment score is: $\max \{M(n,m), X(n,m), Y(n,m)\}$

Problem 4.

Background

This problem is about using stochastic context free grammar formalization to model a RNA sequence motif, including secondary structure information.

We want to model a stem-loop structure like this one:

```
5' (((NNNN)))Yu 3'
```

Where paired () represent bases paired in an RNA stem. Assume the following percent probabilities:

Y c:40 u:60 N a:20 c:30 q:20 u:30

() c=g:25 g=c:25 a=u:20 u=a:20 u=g:05 g=u:05

Where 40 means 40%, etc; and c=g indicates a cytosine base paired with a guanine base in a stem structure.

Continued next page...

Problem 4a. Write a stochastic context free grammar to generate sequences consistent with the sequence motif and probabilities described above. Your grammar can use the symbols Y and N in the same way as above; but do not use "()", or "=" in your grammar; instead use alphanumerical symbols such as H or H_1 etc.

Solution: N --> a:20 c:30 g:20 u:30 Y --> c:40 u:60 L --> N N N N H₁ --> aLu:20 gLc:25 aLu:20 uLa:20 uLg:5 gLu:5 H₂ --> aH₁u:20 gH₁c:25 aH₁u:20 uH₁a:20 uH₁g:5 gH₁u:05 H₃ --> aH₂u:20 gH₂c:25 aH₂u:20 uH₂a:20 uH₂g:5 gH₂u:05 B --> H₃ Y S --> B u

Continued next page...

Problem 4b. What is the probability the model would generate the following sequence?

ggccuaggcuuu

Show enough calculation to justify your answer.

Solution: Important to note that this grammar produces fixed length strings and the alignment between terminals (RNA bases) to the production rules is trivial. the only possible parse is:

([{ NNNN }]) Yu
ggc cuag gcu uu

This requires a non-canonical g=u pair in the stem structure, which our grammar allows.

Since there is only one viable parse we just need the product of the mappings:

nattarr	haca(c) 0/ m	arababi	7;+,,		
parter	n base(5) %	100901	IILY		
Ν	С		20			
Ν	u		30			
Ν	а		30			
Ν	g		20			
()	gu		05			
[]	gc		25			
{}	cg		25			
Y	u		60			
u	u		100			
(* .20	.30.30	.20 .05	.25 .2	5.60)	>	6.75e
The prob	ability is 6.'	75×10^{-6} .				

-06