Midterm exam，Genome Informatics 20221025 Write your name on each sheet．

	Z_{h}	Z_{r}	Z_{t}
H	0.9	0.5	0.1
T	0.1	0.5	0.9

Emission probabilities of $\{H, T\}$ for the 3 states．

The model is a＂left－to－right＂model，always starting in state Z_{h} ．
The observed output sequence is $X=$ HННTTT．

Notation

Here I suggest some notation to use when showing your work．
Let $\mathrm{P}\left[X_{1-i}\right]$ be a shorthand for the first i letters of the output，e．g． $\mathrm{P}\left[X_{1-4}\right]=$ HHHT．
Use Q to denote a hidden state sequence，Q_{i} is the hidden state at time step i ．For brevity let $Q_{i k}$ denote $Q_{i}=Z_{k}$ ，e．g．$Q_{4 r}$ means the model was in state Z_{r} in time step 4.
To further simplify notation you may use $\mathrm{P}[h \rightarrow r]$ as a shorthand for the transition proba－ bility $\mathrm{P}\left[Q_{i+1}=Z_{r} \mid Q_{i}=Z_{h}\right]$ ．

You will work with numerical values．
We will consider any answer correct in the first 3 digits to be correct．
But please write as many digits as possible，as this can help us trace your work．
（爲了幫助我們確認你的計算，請笽量不要四捨五入）

Problem 1.

What is the probability of the output X given the model, $\mathrm{P}[X \mid \lambda, \operatorname{len}(X)=6]$?

Solution: We use the "forward" algorithm.
1 st step. Always starts in state Z_{h}.

$$
\mathrm{P}\left[X_{1}=\mathrm{H}\right]=\mathrm{P}\left[X_{1}=\mathrm{H}, Q_{1}=Z_{h}\right]=0.9
$$

2nd step. State Z_{t} is still unreachable, so two possibilities for $Q_{1-2}, Z_{t} Z_{t}$ and $Z_{t} Z_{r}$

$$
\begin{aligned}
& \mathrm{P}\left[X_{1-2}, Q_{2 h}\right]=\mathrm{P}\left[X_{1}\right] \mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{2} \mid Q_{2 h}\right]=(0.9)(0.8)(0.9)=\mathbf{0 . 6 4 8} \\
& \mathrm{P}\left[X_{1-2}, Q_{2 r}\right]=\mathrm{P}\left[X_{1}\right] \mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{2} \mid Q_{2 r}\right]=(0.9)(0.2)(0.5)=\mathbf{0 . 0 9}
\end{aligned}
$$

Thus
3rd step. In this step the possiblities are:

$$
\begin{aligned}
\mathrm{P}\left[X_{1-3}, Q_{3 h}\right]=\mathrm{P}\left[X_{1-2}, Q_{2 h}\right] \mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{3} \mid Q_{3 h}\right]=(0.648)(0.8)(0.9) & =\mathbf{0 . 4 6 6 5 6} \\
\mathrm{P}\left[X_{1-3}, Q_{3 r}\right]=\mathrm{P}\left[X_{1-2}, Q_{2 h}\right] \mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{3} \mid Q_{3 r}\right]=(0.648)(0.2)(0.5) & =\mathbf{0 . 0 6 4 8} \\
\mathrm{P}\left[X_{1-3}, Q_{3 t}\right]=\mathrm{P}\left[X_{1-2}, Q_{2 r}\right] \mathrm{P}[r \rightarrow t] \mathrm{P}\left[X_{3} \mid Q_{3 t}\right]=(0.09)(1.0)(0.1) & =\mathbf{0 . 0 0 9}
\end{aligned}
$$

4th step.

$$
\begin{array}{rlrrr}
\mathrm{P}\left[X_{1-4}, Q_{4 h}\right] & =\mathrm{P}\left[X_{1-3}, Q_{3 h}\right] \mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{4} \mid Q_{4 h}\right] & =(0.46656)(0.8)(0.1)= & \mathbf{0 . 0 3 7 3 2 4 8} \\
\mathrm{P}\left[X_{1-4}, Q_{4 r}\right]=\mathrm{P}\left[X_{1-3}, Q_{3 h}\right] \mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{4} \mid Q_{4 r}\right] & =(0.46656)(0.2)(0.5)= & \mathbf{0 . 0 4 6 6 5 6} \\
\mathrm{P}\left[X_{1-4}, Q_{4 t}\right] & =\mathrm{P}\left[X_{1-3}, Q_{3 r}\right] \mathrm{P}[r \rightarrow t] \mathrm{P}\left[X_{4} \mid Q_{4 t}\right] & =(0.0648)(1.0)(0.9)= & 0.05832 \\
& +\mathrm{P}\left[X_{1-3}, Q_{3 t}\right] \mathrm{P}[t \rightarrow t] \mathrm{P}\left[X_{4} \mid Q_{4 t}\right] & =(0.009)(1.0)(0.9) & +0.00810 \\
& & = & \mathbf{0 . 0 6 6 4 2}
\end{array}
$$

5th step.

$$
\begin{array}{rlrrr}
\mathrm{P}\left[X_{1-5}, Q_{5 h}\right] & =\mathrm{P}\left[X_{1-4}, Q_{4 h}\right] \mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{5} \mid Q_{5 h}\right] & =(0.0373248)(0.8)(0.1) & = & \mathbf{0 . 0 0 2 9 8 5 9 8} \\
\mathrm{P}\left[X_{1-5}, Q_{5 r}\right] & =\mathrm{P}\left[X_{1-4}, Q_{4 h}\right] \mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{5} \mid Q_{5 r}\right] & =(0.0373248)(0.2)(0.5) & = & \mathbf{0 . 0 0 3 7 3 2 4 8} \\
\mathrm{P}\left[X_{1-5}, Q_{5 t}\right] & =\mathrm{P}\left[X_{1-4}, Q_{4 r}\right] \mathrm{P}[r \rightarrow t] \mathrm{P}\left[X_{5} \mid Q_{5 t}\right] & =(0.046656)(1.0)(0.9) & = & 0.0419904 \\
& +\mathrm{P}\left[X_{1-4}, Q_{4 t}\right] \mathrm{P}[t \rightarrow t] \mathrm{P}\left[X_{5} \mid Q_{5 t}\right] & =(0.06642)(1.0)(0.9) & +0.0597780 \\
& & & \mathbf{0 . 1 0 1 6 7 8 4}
\end{array}
$$

6th step.

$$
\begin{array}{rlrr}
\mathrm{P}\left[X_{1-6}, Q_{6 h}\right] & =\mathrm{P}\left[X_{1-5}, Q_{5 h}\right] \mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{6} \mid Q_{6 h}\right] & =(0.00298598)(0.8)(0.1)= & \mathbf{0 . 0 0 0 2 3 8 8 7 8} \\
\mathrm{P}\left[X_{1-6}, Q_{6 r}\right] & =\mathrm{P}\left[X_{1-5}, Q_{5 h}\right] \mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{6} \mid Q_{6 r}\right] & =(0.00298598)(0.2)(0.5)= & \mathbf{0 . 0 0 0 2 9 8 5 9 8} \\
\mathrm{P}\left[X_{1-6}, Q_{6 t}\right] & =\mathrm{P}\left[X_{1-5}, Q_{5 r}\right] \mathrm{P}[r \rightarrow t] \mathrm{P}\left[X_{6} \mid Q_{6 t}\right] & =(0.00373248)(1.0)(0.9)= & 0.00335923 \\
& +\mathrm{P}\left[X_{1-5}, Q_{5 t}\right] \mathrm{P}[t \rightarrow t] \mathrm{P}\left[X_{6} \mid Q_{6 t}\right] & =(0.1016784)(1.0)(0.9) & +0.09151060 \\
& =\mathbf{0 . 0 9 4 8 6 9 8 3} \\
& & \\
\mathrm{P}\left[X_{1-6}\right] & =\mathrm{P}\left[X_{1-6}, Q_{6 h}\right]+\mathrm{P}\left[X_{1-6}, Q_{6 r}\right]+\mathrm{P}\left[X_{1-6}, Q_{6 t}\right] \\
& =0.000238878+0.000298598+0.09486983=0.0954073 \approx 0.0954
\end{array}
$$

Problem 2.

What is the maximum likelihood state sequence (Viterbi decoding)? What is the likelihood of that sequence?

In other words, compute $\mathrm{P}\left[Q^{*} \mid X\right]$,
where Q^{*} denotes the maximum likelihood path: $\arg \max _{Q \in\left\{\mathbf{Q}_{1-6}\right\}} \mathrm{P}\left[Q \mid X_{1-6}\right]$. and $\mathbf{Q}_{1-\mathbf{6}}$ denotes the set of all state sequences of length 6 .

For intermediate calculations, use $\delta_{i k}$ to denote: $\max _{Q \in\left\{\mathbf{Q}_{1-\mathrm{ik}}\right\}} \mathrm{P}\left[Q \mid X_{1-i}\right]$, where $\mathbf{Q}_{\mathbf{1 - \mathbf { i } \mathbf { k }}}$ denotes the set of all state sequences of length i, ending in state Z_{k}.

Solution: Following Rabiner, we will find it convenient to compute $\mathrm{P}[Q, X] \propto \mathrm{P}[Q \mid X]$. 1st step. Always starts in state Z_{h}, so $\delta_{1 h}=P\left[X_{1}\right]=\mathbf{0 . 9}, \delta_{1 r}=\delta_{1 t}=0$.

2nd step. HMM either stays in state Z_{h} or advances to Z_{r}.

$$
\begin{aligned}
\delta_{2 h} & =\delta_{1 h} \mathrm{P}\left[X_{2} \mid Q_{2 h}\right] \mathrm{P}[h \rightarrow h] & =(0.9)(0.9)(0.8) & = \\
\delta_{2 r} & =\delta_{1 h} \mathrm{P}\left[\mathbf{X}_{2} \mid \mathbf{Q}_{2 r}\right] \mathrm{P}[\mathbf{h} \rightarrow \mathbf{r}] & =(0.9)(0.5)(0.2) & =
\end{aligned}
$$

3rd step.

$$
\begin{array}{llrr}
\delta_{3 h}=\delta_{2 h} \mathrm{P}\left[\mathbf{X}_{3} \mid \mathbf{Q}_{3 h}\right] \mathrm{P}[\mathbf{h} \rightarrow \mathbf{h}] & =(0.648)(0.9)(0.8)= & 0.46656 \\
\delta_{3 r}=\delta_{2 h} \mathrm{P}\left[\mathbf{X}_{3} \mid \mathbf{Q}_{3 r}\right] \mathrm{P}[\mathbf{h} \rightarrow \mathbf{r}] & =(0.648)(0.5)(0.2)= & \mathbf{0 . 0 6 4 8} \\
\delta_{3 t}=\delta_{2 r} \mathrm{P}\left[X_{3} \mid Q_{3 t}\right] \mathrm{P}[r \rightarrow t] & & =(0.09)(0.1)(1.0)= & 0.0090
\end{array}
$$

4th step.

$$
\begin{array}{rlrrr}
\delta_{4 h}=\delta_{3 h} \mathrm{P}\left[X_{4} \mid Q_{4 h}\right] \mathrm{P}[h \rightarrow h] & =(0.46656)(0.1)(0.8)= & 0.0373248 \\
\delta_{4 r}=\delta_{3 h} \mathrm{P}\left[X_{4} \mid Q_{4 r}\right] \mathrm{P}[h \rightarrow r] & =(0.46656)(0.5)(0.2)= & 0.046656 \\
\delta_{4 t} \mid Q_{3 r}=\delta_{3 r} \mathrm{P}\left[X_{4} \mid Q_{4 t}\right] \mathrm{P}[r \rightarrow t] & & =(0.0648)(0.9)(1.0)= & 0.05832 \\
\delta_{4 t} \mid Q_{3 t}=\delta_{3 t} \mathrm{P}\left[X_{4} \mid Q_{4 t}\right] \mathrm{P}[t \rightarrow t] & & =(0.009)(0.9)(1.0)= & 0.00810
\end{array}
$$

Where $\delta_{4 t} \mid Q_{3 r}$ denotes the maximum likelihood path under the constraint that it includes $Q_{3 r} Q_{4 t}$.

5th step.

$$
\begin{array}{rlrrr}
\delta_{5 h}=\delta_{4 h} \mathrm{P}\left[X_{5} \mid Q_{5 h}\right] \mathrm{P}[h \rightarrow h] & =(0.0373248)(0.1)(0.8)= & 0.00298598 \\
\delta_{5 r} & =\delta_{4 h} \mathrm{P}\left[X_{5} \mid Q_{5 r}\right] \mathrm{P}[h \rightarrow r] & =(0.0373248)(0.5)(0.2)= & 0.00373248 \\
\delta_{5 t} \mid Q_{4 r} & =\delta_{4 r} \mathrm{P}\left[X_{5} \mid Q_{5 t}\right] \mathrm{P}[r \rightarrow t] & =(0.046656)(0.9)(1.0)= & 0.0419904 \\
\delta_{5 t} \mid Q_{4 t}=\delta_{4 t} \mathrm{P}\left[X_{5} \mid Q_{5 t}\right] \mathrm{P}[t \rightarrow t] & & =(0.05832)(0.9)(1.0)= & \mathbf{0 . 0 5 2 4 8 8 0}
\end{array}
$$

6th step.

$$
\begin{array}{rlrl}
\delta_{6 h} & =\delta_{5 h} \mathrm{P}\left[X_{6} \mid Q_{6 h}\right] \mathrm{P}[h \rightarrow h] & =(0.00298598)(0.1)(0.8)=0.000238878 \\
\delta_{6 r} & =\delta_{5 h} \mathrm{P}\left[X_{6} \mid Q_{6 r}\right] \mathrm{P}[h \rightarrow r] & =(0.00298598)(0.5)(0.2)=0.000298598 \\
\delta_{6 t} \mid Q_{5 r} & =\delta_{5 r} \mathrm{P}\left[X_{6} \mid Q_{6 t}\right] \mathrm{P}[r \rightarrow t] & & =(0.00373248)(0.9)(1.0)=0.00335923 \\
\delta_{6 t} \mid Q_{5 t} & =\delta_{5 t} \mathrm{P}\left[X_{6} \mid Q_{6 t}\right] \mathrm{P}[t \rightarrow t] & & =(0.0524880)(0.9)(1.0)=\mathbf{0 . 0 4 7 2 3 9 2 0}
\end{array}
$$

The Viterbi path is: $Q^{*}=Z_{h} Z_{h} Z_{r} Z_{t} Z_{t} Z_{t}$
$\mathrm{P}\left[Q^{*}, X\right]=0.0472392$ so,

$$
\mathrm{P}\left[Q^{*} \mid X\right]=\mathrm{P}\left[Q^{*}, X\right] / \mathrm{P}[X]=0.0472392 / 0.0954073=0.4951319238674609 \approx 0.495
$$

Problem 3.

What is the posterior decoding?
In other words, what is the state sequence: $Q^{M}=Q_{1}^{M} Q_{2}^{M} \cdots Q_{6}^{M}$
where $Q_{i}^{M} \stackrel{\text { def }}{=} \max _{k \in\left\{Z_{h}, Z_{r}, Z_{t}\right\}} \mathrm{P}\left[Q_{i}=Z_{k} \mid X\right]$.
For each position i and state $k \in\left\{Z_{h}, Z_{r}, Z_{t}\right\}$, give the probability $\mathrm{P}\left[Q_{i}=Z_{k} \mid X\right]$.
Hint: Note that the fact that some transitions have probability one can be used to simplify the backward algorithm computation.

Solution: To solve this, we can combine probabilities computed from the "forward" and "backward" algorithms. We already did the forward algorithm in a previous problem.
Here we use the backward algorithm to compute: $\mathrm{P}\left[X_{i+1}, \cdots X_{6} \mid Q_{i k}\right]$. Using $\beta_{i k}$ to denote $\mathrm{P}\left[X_{i+1}, \cdots, X_{6} \mid Q_{i k}\right]$
As the hint in the question states, the deterministic transition from Z_{r} to Z_{t} can help us. In particular, note that if we are in either state Z_{r} to Z_{t} in step i, we will definitely be in state Z_{t} in step. Since $\beta_{i k}$ is affected only by the output after step i, we have $\beta_{i r} \equiv \beta_{i t}$. Therefore we omit $\beta_{i t}$ in the calculations below.

5th step (counting backwards)

$$
\begin{array}{rlrl}
\mathrm{P}\left[X_{6} \mid Q_{5 r}\right] & =\mathrm{P}[r \rightarrow t] \mathrm{P}\left[X_{6} \mid Q_{6 t}\right] & & =(1.0)(0.9)=\mathbf{0 . 9 0} \\
\mathrm{P}\left[X_{6} \mid Q_{5 h}, Q_{6 h}\right] & =\mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{6} \mid Q_{6 h}\right] & & =(0.8)(0.1)=0.08 \\
\mathrm{P}\left[X_{6} \mid Q_{5 h}, Q_{66}\right] & =\mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{6} \mid Q_{6 h}\right] & & =(0.2)(0.5)=0.10 \\
\mathrm{P}\left[X_{6} \mid Q_{5 h}\right] & =\mathrm{P}\left[X_{6} \mid Q_{5 h}, Q_{6 h}\right]+\mathrm{P}\left[X_{6} \mid Q_{5 h}, Q_{6 r}\right]=0.08 & +0.10=\mathbf{0 . 1 8}
\end{array}
$$

4th step

$$
\begin{aligned}
& \mathrm{P}\left[X_{5-6} \mid Q_{4 r}\right]=\mathrm{P}[r \rightarrow t] \mathrm{P}\left[X_{5} \mid Q_{5 t}\right] \mathrm{P}\left[X_{6} \mid Q_{5 t}\right] \quad=(1.0)(0.9)(0.9)=\mathbf{0 . 8 1} \\
& \mathrm{P}\left[X_{5-6} \mid Q_{4 h}, Q_{5 r}\right]=\mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{5} \mid Q_{5 r}\right] \mathrm{P}\left[X_{6} \mid Q_{5 r}\right] \quad=(0.2)(0.5)(0.9)=0.09 \\
& \mathrm{P}\left[X_{5-6} \mid Q_{4 h}, Q_{5 h}\right]=\mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{5} \mid Q_{5 h}\right] \mathrm{P}\left[X_{6} \mid Q_{5 h}\right] \quad=(0.8)(0.1)(0.18)=0.0144 \\
& \mathrm{P}\left[X_{5-6} \mid Q_{4 h}\right]=\mathrm{P}\left[X_{5-6} \mid Q_{4 h}, Q_{5 r}\right]+\mathrm{P}\left[X_{5-6} \mid Q_{4 h}, Q_{5 h}\right] \quad=0.09+0.0144=\mathbf{0 . 1 0 4 4}
\end{aligned}
$$

3th step

$$
\begin{aligned}
\mathrm{P}\left[X_{4-6} \mid Q_{3 r}\right] & =\mathrm{P}[r \rightarrow t] \mathrm{P}\left[X_{4} \mid Q_{4 t}\right] \mathrm{P}\left[X_{5-6} \mid Q_{4 t}\right] & & =(1.0)(0.9)(0.81)=\mathbf{0 . 7 2 9} \\
\mathrm{P}\left[X_{4-6} \mid Q_{3 h}, Q_{4 r}\right] & =\mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{4} \mid Q_{4 r}\right] \mathrm{P}\left[X_{5-6} \mid Q_{4 r}\right] & & =(0.2)(0.5)(0.81)=0.081 \\
\mathrm{P}\left[X_{4-6} \mid Q_{3 h}, Q_{4 h}\right] & =\mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{4} \mid Q_{4 h}\right] \mathrm{P}\left[X_{5-6} \mid Q_{4 h}\right] & & =(0.8)(0.1)(0.1044)=0.008352 \\
\mathrm{P}\left[X_{4-6} \mid Q_{3 h}\right] & =\mathrm{P}\left[X_{4-6} \mid Q_{3 h}, Q_{4 t}\right]+\mathrm{P}\left[X_{4-6} \mid Q_{3 h}, Q_{4 h}\right] & & =0.081+0.008352=\mathbf{0 . 0 8 9 3 5 2}
\end{aligned}
$$

2nd step

$$
\begin{aligned}
& \mathrm{P}\left[X_{3-6} \mid Q_{2 r}\right]=\mathrm{P}[r \rightarrow t] \mathrm{P}\left[X_{3} \mid Q_{3 t}\right] \mathrm{P}\left[X_{4-6} \mid Q_{3 r}\right] \quad=(1.0)(0.1)(0.729)=\mathbf{0 . 0 7 2 9} \\
& \mathrm{P}\left[X_{3-6} \mid Q_{2 h}, Q_{3 r}\right]=\mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{3} \mid Q_{3 r}\right] \mathrm{P}\left[X_{4-6} \mid Q_{3 r}\right] \quad=(0.2)(0.5)(0.729)=0.0729 \\
& \mathrm{P}\left[X_{3-6} \mid Q_{2 h}, Q_{3 h}\right]=\mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{3} \mid Q_{3 h}\right] \mathrm{P}\left[X_{4-6} \mid Q_{3 h}\right] \quad=(0.8)(0.9)(0.089352)=0.0643334 \\
& \mathrm{P}\left[X_{3-6} \mid Q_{2 h}\right]=\mathrm{P}\left[X_{3-6} \mid Q_{2 h}, Q_{3 t}\right]+\mathrm{P}\left[X_{3-6} \mid Q_{2 h}, Q_{3 h}\right] \quad=0.0729+0.0643334=\mathbf{0 . 1 3 7 2 3 3}
\end{aligned}
$$

1st step

$$
\begin{aligned}
& \mathrm{P}\left[X_{2-6} \mid Q_{1 r}\right]=\mathrm{P}[r \rightarrow t] \mathrm{P}\left[X_{2} \mid Q_{2 t}\right] \mathrm{P}\left[X_{3-6} \mid Q_{2 r}\right] \quad=(1.0)(0.1)(0.0729)=\mathbf{0 . 0 0 7 2 9} \\
& \mathrm{P}\left[X_{2-6} \mid Q_{1 h}, Q_{2 r}\right]=\mathrm{P}[h \rightarrow r] \mathrm{P}\left[X_{2} \mid Q_{2 r}\right] \mathrm{P}\left[X_{3-6} \mid Q_{2 r}\right] \quad=(0.2)(0.5)(0.0729)=0.00729 \\
& \mathrm{P}\left[X_{2-6} \mid Q_{1 h}, Q_{2 h}\right]=\mathrm{P}[h \rightarrow h] \mathrm{P}\left[X_{2} \mid Q_{2 h}\right] \mathrm{P}\left[X_{3-6} \mid Q_{2 h}\right] \quad=(0.8)(0.9)(0.137233)=0.0988078 \\
& \mathrm{P}\left[X_{2-6} \mid Q_{1 h}\right]=\mathrm{P}\left[X_{2-6} \mid Q_{1 h}, Q_{2 t}\right]+\mathrm{P}\left[X_{2-6} \mid Q_{1 h}, Q_{2 h}\right]=0.00729+0.0988078=\mathbf{0 . 1 0 6 0 9 8}
\end{aligned}
$$

Now we multiply the forward and backward probabilities to obtain $\mathrm{P}\left[Q_{i}=Z_{k} \mid X\right]$ for all combinations of step i and state k.

step i	state k	$\alpha_{i k}$	$\beta_{i k}$	$\alpha_{i k} \beta_{i k}$
1	Z_{h}	0.9	0.106098	0.0954882
	Z_{r}	0	0.00729	0
	Z_{t}	0	0.00729	0
2	Z_{h}	0.648	0.137233	0.088927
	Z_{r}	0.09	0.0729	0.006561
	Z_{t}	0	0.0729	0
3	Z_{h}	0.46656	0.089352	0.0416881
	Z_{r}	0.0648	0.729	0.0472392
	Z_{t}	0.009	0.729	0.006561
4	Z_{h}	0.0373248	0.1044	0.00389671
	Z_{r}	0.046656	0.81	0.0377914
	Z_{t}	0.06642	0.81	0.0538002
5	Z_{h}	0.00298598	0.18	0.000537476
	Z_{r}	0.00373248	0.9	0.00335923
	Z_{t}	0.1016784	0.9	0.0915106
6	Z_{h}	0.000238878		0.000238878
	Z_{r}	0.000298598	1	0.000298598
	Z_{t}	0.09486983		0.09486983
The posterior decoding is obtained by concatenating the maximum probability state in each time step (shown in bold in the preceding table).				
We obtain $Z_{h} Z_{h} Z_{r} Z_{t} Z_{t} Z_{t}$. Rather boring result in that in this case it happens to be the same as the Viterbi path.				

