
Midterm exam, Genome Informatics 20221025 Write your name on each sheet.

𝑍ℎ

𝑍𝑟

𝑍𝑡0.8 1.0

0.2 1.0
𝑍ℎ 𝑍𝑟 𝑍𝑡

H 0.9 0.5 0.1
T 0.1 0.5 0.9

Emission probabilities
of {H,T} for the 3 states.

The model is a “left-to-right” model, always starting in state 𝑍ℎ.
The observed output sequence is 𝑋 = HHHTTT.

Notation
Here I suggest some notation to use when showing your work.
Let P[𝑋1−𝑖] be a shorthand for the first 𝑖 letters of the output, e.g. P[𝑋1−4] = HHHT.
Use 𝑄 to denote a hidden state sequence, 𝑄𝑖 is the hidden state at time step 𝑖. For brevity
let 𝑄𝑖𝑘 denote 𝑄𝑖 = 𝑍𝑘, e.g. 𝑄4𝑟 means the model was in state 𝑍𝑟 in time step 4.
To further simplify notation you may use P[ℎ→𝑟] as a shorthand for the transition proba-
bility P[𝑄𝑖+1 = 𝑍𝑟|𝑄𝑖 = 𝑍ℎ].

You will work with numerical values.
We will consider any answer correct in the first 3 digits to be correct.
But please write as many digits as possible, as this can help us trace your work.
(為了幫助我們確認你的計算，請盡量不要四捨五入)



Problem 1.
What is the probability of the output 𝑋 given the model, P[𝑋|𝜆, len(𝑋) = 6]?

Solution: We use the “forward” algorithm.
1st step. Always starts in state 𝑍ℎ.

P[𝑋1 = H] = P[𝑋1 = H, 𝑄1 = 𝑍ℎ] = 0.9.

2nd step. State 𝑍𝑡 is still unreachable, so two possibilities for 𝑄1−2, 𝑍𝑡𝑍𝑡 and 𝑍𝑡𝑍𝑟

P[𝑋1−2, 𝑄2ℎ] = P[𝑋1] P[ℎ→ℎ] P[𝑋2|𝑄2ℎ] = (0.9)(0.8)(0.9) = 0.648
P[𝑋1−2, 𝑄2𝑟] = P[𝑋1] P[ℎ→𝑟] P[𝑋2|𝑄2𝑟] = (0.9)(0.2)(0.5) = 0.09

Thus
3rd step. In this step the possiblities are:

P[𝑋1−3, 𝑄3ℎ] = P[𝑋1−2, 𝑄2ℎ] P[ℎ→ℎ] P[𝑋3|𝑄3ℎ] = (0.648)(0.8)(0.9) = 0.46656
P[𝑋1−3, 𝑄3𝑟] = P[𝑋1−2, 𝑄2ℎ] P[ℎ→𝑟] P[𝑋3|𝑄3𝑟] = (0.648)(0.2)(0.5) = 0.0648
P[𝑋1−3, 𝑄3𝑡] = P[𝑋1−2, 𝑄2𝑟] P[𝑟→𝑡] P[𝑋3|𝑄3𝑡] = (0.09)(1.0)(0.1) = 0.009

4th step.

P[𝑋1−4, 𝑄4ℎ] =P[𝑋1−3, 𝑄3ℎ] P[ℎ→ℎ] P[𝑋4|𝑄4ℎ] = (0.46656)(0.8)(0.1) = 0.0373248
P[𝑋1−4, 𝑄4𝑟] =P[𝑋1−3, 𝑄3ℎ] P[ℎ→𝑟] P[𝑋4|𝑄4𝑟] = (0.46656)(0.2)(0.5) = 0.046656
P[𝑋1−4, 𝑄4𝑡] =P[𝑋1−3, 𝑄3𝑟] P[𝑟→𝑡] P[𝑋4|𝑄4𝑡] = (0.0648)(1.0)(0.9) = 0.05832

+P[𝑋1−3, 𝑄3𝑡] P[𝑡→𝑡] P[𝑋4|𝑄4𝑡] = (0.009)(1.0)(0.9) +0.00810
= 0.06642

5th step.

P[𝑋1−5, 𝑄5ℎ] =P[𝑋1−4, 𝑄4ℎ] P[ℎ→ℎ] P[𝑋5|𝑄5ℎ] = (0.0373248)(0.8)(0.1) = 0.00298598
P[𝑋1−5, 𝑄5𝑟] =P[𝑋1−4, 𝑄4ℎ] P[ℎ→𝑟] P[𝑋5|𝑄5𝑟] = (0.0373248)(0.2)(0.5) = 0.00373248
P[𝑋1−5, 𝑄5𝑡] =P[𝑋1−4, 𝑄4𝑟] P[𝑟→𝑡] P[𝑋5|𝑄5𝑡] = (0.046656)(1.0)(0.9) = 0.0419904

+P[𝑋1−4, 𝑄4𝑡] P[𝑡→𝑡] P[𝑋5|𝑄5𝑡] = (0.06642)(1.0)(0.9) +0.0597780
= 0.1016784



6th step.

P[𝑋1−6, 𝑄6ℎ] =P[𝑋1−5, 𝑄5ℎ] P[ℎ→ℎ] P[𝑋6|𝑄6ℎ] = (0.00298598)(0.8)(0.1) = 0.000238878
P[𝑋1−6, 𝑄6𝑟] =P[𝑋1−5, 𝑄5ℎ] P[ℎ→𝑟] P[𝑋6|𝑄6𝑟] = (0.00298598)(0.2)(0.5) = 0.000298598
P[𝑋1−6, 𝑄6𝑡] =P[𝑋1−5, 𝑄5𝑟] P[𝑟→𝑡] P[𝑋6|𝑄6𝑡] = (0.00373248)(1.0)(0.9) = 0.00335923

+P[𝑋1−5, 𝑄5𝑡] P[𝑡→𝑡] P[𝑋6|𝑄6𝑡] = (0.1016784)(1.0)(0.9) +0.09151060
= 0.09486983

P[𝑋1−6] = P[𝑋1−6, 𝑄6ℎ] + P[𝑋1−6, 𝑄6𝑟] + P[𝑋1−6, 𝑄6𝑡]
= 0.000238878 + 0.000298598 + 0.09486983 = 0.0954073 ≈ 0.0954



Problem 2.
What is the maximum likelihood state sequence (Viterbi decoding)?
What is the likelihood of that sequence?

In other words, compute P[𝑄∗|𝑋],
where 𝑄∗ denotes the maximum likelihood path: arg max𝑄∈{Q1−6} P[𝑄|𝑋1−6].
and Q1−6 denotes the set of all state sequences of length 6.

For intermediate calculations, use 𝛿𝑖𝑘 to denote: max𝑄∈{Q1−ik} P[𝑄|𝑋1−𝑖],
where Q1−ik denotes the set of all state sequences of length 𝑖, ending in state 𝑍𝑘.

Solution: Following Rabiner, we will find it convenient to compute P[𝑄, 𝑋] ∝ P[𝑄|𝑋].
1st step. Always starts in state 𝑍ℎ, so 𝛿1ℎ = 𝑃[𝑋1] = 0.9, 𝛿1𝑟 = 𝛿1𝑡 = 0.

2nd step. HMM either stays in state 𝑍ℎ or advances to 𝑍𝑟.

𝛿2ℎ = 𝛿1ℎ P[𝑋2|𝑄2ℎ] P[ℎ→ℎ] = (0.9)(0.9)(0.8) = 0.648
𝛿2𝑟 = 𝛿1ℎ P[X2|Q2𝑟] P[h→r] = (0.9)(0.5)(0.2) = 0.090

3rd step.

𝛿3ℎ =𝛿2ℎ P[X3|Q3ℎ] P[h→h] = (0.648)(0.9)(0.8) = 0.46656
𝛿3𝑟 =𝛿2ℎ P[X3|Q3𝑟] P[h→r] = (0.648)(0.5)(0.2) = 0.0648
𝛿3𝑡 =𝛿2𝑟 P[𝑋3|𝑄3𝑡] P[𝑟→𝑡] = (0.09)(0.1)(1.0) = 0.0090

4th step.

𝛿4ℎ =𝛿3ℎ P[𝑋4|𝑄4ℎ] P[ℎ→ℎ] = (0.46656)(0.1)(0.8) = 0.0373248
𝛿4𝑟 =𝛿3ℎ P[𝑋4|𝑄4𝑟] P[ℎ→𝑟] = (0.46656)(0.5)(0.2) = 0.046656

𝛿4𝑡|𝑄3𝑟 =𝛿3𝑟 P[𝑋4|𝑄4𝑡] P[𝑟→𝑡] = (0.0648)(0.9)(1.0) = 0.05832
𝛿4𝑡|𝑄3𝑡 =𝛿3𝑡 P[𝑋4|𝑄4𝑡] P[𝑡→𝑡] = (0.009)(0.9)(1.0) = 0.00810

Where 𝛿4𝑡|𝑄3𝑟 denotes the maximum likelihood path under the constraint that it includes
𝑄3𝑟𝑄4𝑡.

5th step.

𝛿5ℎ =𝛿4ℎ P[𝑋5|𝑄5ℎ] P[ℎ→ℎ] = (0.0373248)(0.1)(0.8) = 0.00298598
𝛿5𝑟 =𝛿4ℎ P[𝑋5|𝑄5𝑟] P[ℎ→𝑟] = (0.0373248)(0.5)(0.2) = 0.00373248

𝛿5𝑡|𝑄4𝑟 =𝛿4𝑟 P[𝑋5|𝑄5𝑡] P[𝑟→𝑡] = (0.046656)(0.9)(1.0) = 0.0419904
𝛿5𝑡|𝑄4𝑡 =𝛿4𝑡 P[𝑋5|𝑄5𝑡] P[𝑡→𝑡] = (0.05832)(0.9)(1.0) = 0.0524880



6th step.

𝛿6ℎ =𝛿5ℎ P[𝑋6|𝑄6ℎ] P[ℎ→ℎ] = (0.00298598)(0.1)(0.8) = 0.000238878
𝛿6𝑟 =𝛿5ℎ P[𝑋6|𝑄6𝑟] P[ℎ→𝑟] = (0.00298598)(0.5)(0.2) = 0.000298598

𝛿6𝑡|𝑄5𝑟 =𝛿5𝑟 P[𝑋6|𝑄6𝑡] P[𝑟→𝑡] = (0.00373248)(0.9)(1.0) = 0.00335923
𝛿6𝑡|𝑄5𝑡 =𝛿5𝑡 P[𝑋6|𝑄6𝑡] P[𝑡→𝑡] = (0.0524880)(0.9)(1.0) = 0.04723920

The Viterbi path is: 𝑄∗ = 𝑍ℎ𝑍ℎ𝑍𝑟𝑍𝑡𝑍𝑡𝑍𝑡
P[𝑄∗, 𝑋] = 0.0472392 so,

P[𝑄∗|𝑋] = P[𝑄∗, 𝑋]/P[𝑋] = 0.0472392/0.0954073 = 0.4951319238674609 ≈ 0.495



Problem 3.
What is the posterior decoding?
In other words, what is the state sequence: 𝑄𝑀 = 𝑄𝑀

1 𝑄𝑀
2 · · · 𝑄𝑀

6
where 𝑄𝑀

𝑖 ≝ max𝑘∈{𝑍ℎ,𝑍𝑟,𝑍𝑡} P[𝑄𝑖 = 𝑍𝑘|𝑋].

For each position 𝑖 and state 𝑘 ∈ {𝑍ℎ, 𝑍𝑟, 𝑍𝑡}, give the probability P[𝑄𝑖 = 𝑍𝑘|𝑋].
Hint: Note that the fact that some transitions have probability one can be used to simplify
the backward algorithm computation.

Solution: To solve this, we can combine probabilities computed from the “forward” and
“backward” algorithms. We already did the forward algorithm in a previous problem.
Here we use the backward algorithm to compute: P[𝑋𝑖+1, ⋯𝑋6|𝑄𝑖𝑘]. Using 𝛽𝑖𝑘 to denote
P[𝑋𝑖+1, ⋯, 𝑋6|𝑄𝑖𝑘]
As the hint in the question states, the deterministic transition from 𝑍𝑟 to 𝑍𝑡 can help us.
In particular, note that if we are in either state 𝑍𝑟 to 𝑍𝑡 in step 𝑖, we will definitely be in
state 𝑍𝑡 in step. Since 𝛽𝑖𝑘 is affected only by the output after step 𝑖, we have 𝛽𝑖𝑟 ≡ 𝛽𝑖𝑡.
Therefore we omit 𝛽𝑖𝑡 in the calculations below.

5th step (counting backwards)

P[𝑋6|𝑄5𝑟] = P[𝑟 → 𝑡] P[𝑋6|𝑄6𝑡] = (1.0)(0.9) = 0.90
P[𝑋6|𝑄5ℎ, 𝑄6ℎ] = P[ℎ → ℎ] P[𝑋6|𝑄6ℎ] = (0.8)(0.1) = 0.08
P[𝑋6|𝑄5ℎ, 𝑄6𝑟] = P[ℎ → 𝑟] P[𝑋6|𝑄6ℎ] = (0.2)(0.5) = 0.10

P[𝑋6|𝑄5ℎ] = P[𝑋6|𝑄5ℎ, 𝑄6ℎ] + P[𝑋6|𝑄5ℎ, 𝑄6𝑟] = 0.08 + 0.10 = 0.18



4th step

P[𝑋5−6|𝑄4𝑟] = P[𝑟 → 𝑡] P[𝑋5|𝑄5𝑡] P[𝑋6|𝑄5𝑡] = (1.0)(0.9)(0.9) = 0.81
P[𝑋5−6|𝑄4ℎ, 𝑄5𝑟] = P[ℎ → 𝑟] P[𝑋5|𝑄5𝑟] P[𝑋6|𝑄5𝑟] = (0.2)(0.5)(0.9) = 0.09
P[𝑋5−6|𝑄4ℎ, 𝑄5ℎ] = P[ℎ → ℎ] P[𝑋5|𝑄5ℎ] P[𝑋6|𝑄5ℎ] = (0.8)(0.1)(0.18) = 0.0144

P[𝑋5−6|𝑄4ℎ] = P[𝑋5−6|𝑄4ℎ, 𝑄5𝑟] + P[𝑋5−6|𝑄4ℎ, 𝑄5ℎ] = 0.09 + 0.0144 = 0.1044

3th step

P[𝑋4−6|𝑄3𝑟] = P[𝑟 → 𝑡] P[𝑋4|𝑄4𝑡] P[𝑋5−6|𝑄4𝑡] = (1.0)(0.9)(0.81) = 0.729
P[𝑋4−6|𝑄3ℎ, 𝑄4𝑟] = P[ℎ → 𝑟] P[𝑋4|𝑄4𝑟] P[𝑋5−6|𝑄4𝑟] = (0.2)(0.5)(0.81) = 0.081
P[𝑋4−6|𝑄3ℎ, 𝑄4ℎ] = P[ℎ → ℎ] P[𝑋4|𝑄4ℎ] P[𝑋5−6|𝑄4ℎ] = (0.8)(0.1)(0.1044) = 0.008352

P[𝑋4−6|𝑄3ℎ] = P[𝑋4−6|𝑄3ℎ, 𝑄4𝑡] + P[𝑋4−6|𝑄3ℎ, 𝑄4ℎ] = 0.081 + 0.008352 = 0.089352

2nd step

P[𝑋3−6|𝑄2𝑟] = P[𝑟 → 𝑡] P[𝑋3|𝑄3𝑡] P[𝑋4−6|𝑄3𝑟] = (1.0)(0.1)(0.729) = 0.0729
P[𝑋3−6|𝑄2ℎ, 𝑄3𝑟] = P[ℎ → 𝑟] P[𝑋3|𝑄3𝑟] P[𝑋4−6|𝑄3𝑟] = (0.2)(0.5)(0.729) = 0.0729
P[𝑋3−6|𝑄2ℎ, 𝑄3ℎ] = P[ℎ → ℎ] P[𝑋3|𝑄3ℎ] P[𝑋4−6|𝑄3ℎ] = (0.8)(0.9)(0.089352) = 0.0643334

P[𝑋3−6|𝑄2ℎ] = P[𝑋3−6|𝑄2ℎ, 𝑄3𝑡] + P[𝑋3−6|𝑄2ℎ, 𝑄3ℎ] = 0.0729 + 0.0643334 = 0.137233

1st step

P[𝑋2−6|𝑄1𝑟] = P[𝑟 → 𝑡] P[𝑋2|𝑄2𝑡] P[𝑋3−6|𝑄2𝑟] = (1.0)(0.1)(0.0729) = 0.00729
P[𝑋2−6|𝑄1ℎ, 𝑄2𝑟] = P[ℎ → 𝑟] P[𝑋2|𝑄2𝑟] P[𝑋3−6|𝑄2𝑟] = (0.2)(0.5)(0.0729) = 0.00729
P[𝑋2−6|𝑄1ℎ, 𝑄2ℎ] = P[ℎ → ℎ] P[𝑋2|𝑄2ℎ] P[𝑋3−6|𝑄2ℎ] = (0.8)(0.9)(0.137233) = 0.0988078

P[𝑋2−6|𝑄1ℎ] = P[𝑋2−6|𝑄1ℎ, 𝑄2𝑡] + P[𝑋2−6|𝑄1ℎ, 𝑄2ℎ] = 0.00729 + 0.0988078 = 0.106098

Now we multiply the forward and backward probabilities to obtain P[𝑄𝑖 = 𝑍𝑘|𝑋] for all
combinations of step 𝑖 and state 𝑘.



step 𝑖 state 𝑘 𝛼𝑖𝑘 𝛽𝑖𝑘 𝛼𝑖𝑘�𝛽𝑖𝑘
1 𝑍ℎ 0.9 0.106098 0.0954882

𝑍𝑟 0 0.00729 0
𝑍𝑡 0 0.00729 0

2 𝑍ℎ 0.648 0.137233 0.088927
𝑍𝑟 0.09 0.0729 0.006561
𝑍𝑡 0 0.0729 0

3 𝑍ℎ 0.46656 0.089352 0.0416881
𝑍𝑟 0.0648 0.729 0.0472392
𝑍𝑡 0.009 0.729 0.006561

4 𝑍ℎ 0.0373248 0.1044 0.00389671
𝑍𝑟 0.046656 0.81 0.0377914
𝑍𝑡 0.06642 0.81 0.0538002

5 𝑍ℎ 0.00298598 0.18 0.000537476
𝑍𝑟 0.00373248 0.9 0.00335923
𝑍𝑡 0.1016784 0.9 0.0915106

6 𝑍ℎ 0.000238878 1 0.000238878
𝑍𝑟 0.000298598 1 0.000298598
𝑍𝑡 0.09486983 1 0.09486983

The posterior decoding is obtained by concatenating the maximum probability state in
each time step (shown in bold in the preceding table).
We obtain 𝑍ℎ𝑍ℎ𝑍𝑟𝑍𝑡𝑍𝑡𝑍𝑡. Rather boring result in that in this case it happens to be the
same as the Viterbi path.


