Midterm exam, Genome Informatics 20221025 Write your name on each sheet.

The model is a "left-to-right" model, always starting in state Z_h . The observed output sequence is X = HHHTTT.

Notation

Here I suggest some notation to use when showing your work.

Let $P[X_{1-i}]$ be a shorthand for the first *i* letters of the output, e.g. $P[X_{1-4}] = \text{HHHT}$. Use *Q* to denote a hidden state sequence, Q_i is the hidden state at time step *i*. For brevity let Q_{ik} denote $Q_i = Z_k$, e.g. Q_{4r} means the model was in state Z_r in time step 4. To further simplify notation you may use $P[h \rightarrow r]$ as a shorthand for the transition probability $P[Q_{i+1} = Z_r | Q_i = Z_h]$.

You will work with numerical values.

We will consider any answer correct in the first 3 digits to be correct. But please write as many digits as possible, as this can help us trace your work. (為了幫助我們確認你的計算,請盡量不要四捨五入)

Problem 1.

What is the probability of the output X given the model, $P[X|\lambda, len(X) = 6]$?

Solution: We use the "forward" algorithm. 1st step. Always starts in state Z_h . $P[X_1 = H] = P[X_1 = H, Q_1 = Z_h] = 0.9.$ 2nd step. State Z_t is still unreachable, so two possibilities for Q_{1-2} , $Z_t Z_t$ and $Z_t Z_r$ $P[X_{1-2}, Q_{2h}] = P[X_1] P[h \rightarrow h] P[X_2|Q_{2h}] = (0.9)(0.8)(0.9) = 0.648$ $P[X_{1-2}, Q_{2r}] = P[X_1] P[h \rightarrow r] P[X_2|Q_{2r}] = (0.9)(0.2)(0.5) = 0.09$ Thus 3rd step. In this step the possiblities are:

$$\begin{split} \mathbf{P}[X_{1-3},Q_{3h}] &= \mathbf{P}[X_{1-2},Q_{2h}] \, \mathbf{P}[h \to h] \, \mathbf{P}[X_3|Q_{3h}] = (0.648)(0.8)(0.9) &= \mathbf{0.46656} \\ \mathbf{P}[X_{1-3},Q_{3r}] &= \mathbf{P}[X_{1-2},Q_{2h}] \, \mathbf{P}[h \to r] \, \mathbf{P}[X_3|Q_{3r}] = (0.648)(0.2)(0.5) &= \mathbf{0.0648} \\ \mathbf{P}[X_{1-3},Q_{3t}] &= \mathbf{P}[X_{1-2},Q_{2r}] \, \mathbf{P}[r \to t] \, \mathbf{P}[X_3|Q_{3t}] = (0.09)(1.0)(0.1) &= \mathbf{0.009} \end{split}$$

4th step.

$$\begin{split} \mathbf{P}[X_{1-4},Q_{4h}] =& \mathbf{P}[X_{1-3},Q_{3h}] \, \mathbf{P}[h \!\rightarrow\! h] \, \mathbf{P}[X_4|Q_{4h}] &= (0.46656)(0.8)(0.1) = & \mathbf{0.0373248} \\ \mathbf{P}[X_{1-4},Q_{4r}] =& \mathbf{P}[X_{1-3},Q_{3h}] \, \mathbf{P}[h \!\rightarrow\! r] \, \mathbf{P}[X_4|Q_{4r}] &= (0.46656)(0.2)(0.5) = & \mathbf{0.046656} \\ \mathbf{P}[X_{1-4},Q_{4t}] =& \mathbf{P}[X_{1-3},Q_{3r}] \, \mathbf{P}[r \!\rightarrow\! t] \, \mathbf{P}[X_4|Q_{4t}] &= (0.0648)(1.0)(0.9) = & \mathbf{0.05832} \\ &\quad +\mathbf{P}[X_{1-3},Q_{3t}] \, \mathbf{P}[t \!\rightarrow\! t] \, \mathbf{P}[X_4|Q_{4t}] &= (0.009)(1.0)(0.9) = & \mathbf{0.00810} \\ &= & \mathbf{0.06642} \end{split}$$

5th step.

$$\begin{split} \mathbf{P}[X_{1-5},Q_{5h}] =& \mathbf{P}[X_{1-4},Q_{4h}]\,\mathbf{P}[h \!\rightarrow\! h]\,\mathbf{P}[X_5|Q_{5h}] &= (0.0373248)(0.8)(0.1) = & \mathbf{0.00298598} \\ \mathbf{P}[X_{1-5},Q_{5r}] =& \mathbf{P}[X_{1-4},Q_{4h}]\,\mathbf{P}[h \!\rightarrow\! r]\,\mathbf{P}[X_5|Q_{5r}] &= (0.0373248)(0.2)(0.5) = & \mathbf{0.00373248} \\ \mathbf{P}[X_{1-5},Q_{5t}] =& \mathbf{P}[X_{1-4},Q_{4r}]\,\mathbf{P}[r \!\rightarrow\! t]\,\mathbf{P}[X_5|Q_{5t}] &= (0.046656)(1.0)(0.9) = & \mathbf{0.0419904} \\ &+ \mathbf{P}[X_{1-4},Q_{4t}]\,\mathbf{P}[t \!\rightarrow\! t]\,\mathbf{P}[X_5|Q_{5t}] &= (0.06642)(1.0)(0.9) = & \mathbf{0.0419904} \\ &= & \mathbf{0.1016784} \end{split}$$

6th step.

$$\begin{split} \mathbf{P}[X_{1-6},Q_{6h}] =& \mathbf{P}[X_{1-5},Q_{5h}]\,\mathbf{P}[h \!\rightarrow\! h]\,\mathbf{P}[X_6|Q_{6h}] &= (0.00298598)(0.8)(0.1) = & \mathbf{0.000238878} \\ \mathbf{P}[X_{1-6},Q_{6r}] =& \mathbf{P}[X_{1-5},Q_{5h}]\,\mathbf{P}[h \!\rightarrow\! r]\,\mathbf{P}[X_6|Q_{6r}] &= (0.00298598)(0.2)(0.5) = & \mathbf{0.000298598} \\ \mathbf{P}[X_{1-6},Q_{6t}] =& \mathbf{P}[X_{1-5},Q_{5r}]\,\mathbf{P}[r \!\rightarrow\! t]\,\mathbf{P}[X_6|Q_{6t}] &= (0.00373248)(1.0)(0.9) = & 0.00335923 \\ & +\mathbf{P}[X_{1-5},Q_{5t}]\,\mathbf{P}[t \!\rightarrow\! t]\,\mathbf{P}[X_6|Q_{6t}] &= (0.1016784)(1.0)(0.9) = & 0.09486983 \\ & = & \mathbf{0.09486983} \\ \end{split}$$

Problem 2.

What is the maximum likelihood state sequence (Viterbi decoding)? What is the likelihood of that sequence?

In other words, compute $P[Q^*|X]$, where Q^* denotes the maximum likelihood path: $\arg \max_{Q \in \{\mathbf{Q}_{1-6}\}} P[Q|X_{1-6}]$. and \mathbf{Q}_{1-6} denotes the set of all state sequences of length 6.

For intermediate calculations, use δ_{ik} to denote: $\max_{Q \in \{\mathbf{Q}_{1-ik}\}} P[Q|X_{1-i}]$, where \mathbf{Q}_{1-ik} denotes the set of all state sequences of length i, ending in state Z_k .

Solution: Following Rabiner, we will find it convenient to compute $P[Q, X] \propto P[Q|X]$. 1st step. Always starts in state Z_h , so $\delta_{1h} = P[X_1] = 0.9$, $\delta_{1r} = \delta_{1t} = 0$.

2nd step. HMM either stays in state Z_h or advances to Z_r .

$$\begin{split} \delta_{2h} &= \delta_{1h} \operatorname{P}[X_2|Q_{2h}] \operatorname{P}[h \to h] = (0.9)(0.9)(0.8) = & \mathbf{0.648} \\ \delta_{2r} &= \delta_{1h} \operatorname{P}[\mathbf{X}_2|\mathbf{Q}_{2r}] \operatorname{P}[\mathbf{h} \to \mathbf{r}] = (0.9)(0.5)(0.2) = & \mathbf{0.090} \end{split}$$

3rd step.

$$\begin{array}{ll} \delta_{3h} = & \delta_{2h} \operatorname{P}[\mathbf{X}_3 | \mathbf{Q}_{3h}] \operatorname{P}[\mathbf{h} \to \mathbf{h}] &= (0.648)(0.9)(0.8) = & 0.46656 \\ \delta_{3r} = & \delta_{2h} \operatorname{P}[\mathbf{X}_3 | \mathbf{Q}_{3r}] \operatorname{P}[\mathbf{h} \to \mathbf{r}] &= (0.648)(0.5)(0.2) = & \mathbf{0.0648} \\ \delta_{3t} = & \delta_{2r} \operatorname{P}[X_3 | Q_{3t}] \operatorname{P}[r \to t] &= (0.09)(0.1)(1.0) = & 0.0090 \end{array}$$

4th step.

$$\begin{array}{lll} \delta_{4h} = & \delta_{3h} \operatorname{P}[X_4 | Q_{4h}] \operatorname{P}[h \to h] & = (0.46656)(0.1)(0.8) = & 0.0373248 \\ \delta_{4r} = & \delta_{3h} \operatorname{P}[X_4 | Q_{4r}] \operatorname{P}[h \to r] & = (0.46656)(0.5)(0.2) = & 0.046656 \\ \delta_{4t} | Q_{3r} = & \delta_{3r} \operatorname{P}[X_4 | Q_{4t}] \operatorname{P}[r \to t] & = (0.0648)(0.9)(1.0) = & \mathbf{0.05832} \\ \delta_{4t} | Q_{3t} = & \delta_{3t} \operatorname{P}[X_4 | Q_{4t}] \operatorname{P}[t \to t] & = (0.009)(0.9)(1.0) = & 0.00810 \end{array}$$

Where $\delta_{4t}|Q_{3r}$ denotes the maximum likelihood path under the constraint that it includes $Q_{3r}Q_{4t}$.

5th step.

$\delta_{5h}=\!\!\delta_{4h}\operatorname{P}[X_5 Q_{5h}]\operatorname{P}[h\!\rightarrow\!h]$	= (0.0373248)(0.1)(0.8) =	0.00298598
$\delta_{5r} = \! \delta_{4h} \operatorname{P}[X_5 Q_{5r}] \operatorname{P}[h \!\rightarrow\! r]$	= (0.0373248)(0.5)(0.2) =	0.00373248
$\delta_{5t} Q_{4r}=\!\!\delta_{4r}\operatorname{P}[X_5 Q_{5t}]\operatorname{P}[r\!\rightarrow\!t]$	= (0.046656)(0.9)(1.0) =	0.0419904
$\delta_{5t} Q_{4t}=\!\!\delta_{4t}\operatorname{P}[X_5 Q_{5t}]\operatorname{P}[t\!\rightarrow\!t]$	= (0.05832)(0.9)(1.0) =	0.0524880

6th step.

$\delta_{6h} = \! \delta_{5h} \operatorname{P}[X_6 Q_{6h}] \operatorname{P}[h \! \rightarrow \! h]$	= (0.00298598)(0.1)(0.8) = 0.000238878
$\delta_{6r}=\!\!\delta_{5h}\operatorname{P}[X_6 Q_{6r}]\operatorname{P}[h\!\rightarrow\!r]$	= (0.00298598)(0.5)(0.2) = 0.000298598
$\delta_{6t} Q_{5r}=\!\!\delta_{5r}\operatorname{P}[X_6 Q_{6t}]\operatorname{P}[r\!\rightarrow\!t]$	= (0.00373248)(0.9)(1.0) = 0.00335923
$\delta_{6t} Q_{5t}=\!\!\delta_{5t}\operatorname{P}[X_6 Q_{6t}]\operatorname{P}[t\!\rightarrow\!t]$	= (0.0524880)(0.9)(1.0) = 0.04723920

The Viterbi path is: $Q^* = Z_h Z_h Z_r Z_t Z_t Z_t$ P[Q^*, X] = 0.0472392 so,

 $\mathbf{P}[Q^*|X] = \mathbf{P}[Q^*,X] / \mathbf{P}[X] = 0.0472392 / 0.0954073 = 0.4951319238674609 \approx 0.495$

Problem 3.

What is the posterior decoding? In other words, what is the state sequence: $Q^M = Q_1^M Q_2^M \cdots Q_6^M$ where $Q_i^M \stackrel{\text{def}}{=} \max_{k \in \{Z_h, Z_r, Z_t\}} \mathbb{P}[Q_i = Z_k | X].$

For each position i and state $k \in \{Z_h, Z_r, Z_t\}$, give the probability $P[Q_i = Z_k | X]$. *Hint:* Note that the fact that some transitions have probability one can be used to simplify the backward algorithm computation.

Solution: To solve this, we can combine probabilities computed from the "forward" and "backward" algorithms. We already did the forward algorithm in a previous problem. Here we use the backward algorithm to compute: $P[X_{i+1}, \cdots X_6 | Q_{ik}]$. Using β_{ik} to denote $P[X_{i+1}, \cdots, X_6 | Q_{ik}]$

As the hint in the question states, the deterministic transition from Z_r to Z_t can help us. In particular, note that if we are in *either* state Z_r to Z_t in step *i*, we will definitely be in state Z_t in step. Since β_{ik} is affected only by the output *after* step *i*, we have $\beta_{ir} \equiv \beta_{it}$. Therefore we omit β_{it} in the calculations below.

5th step (counting backwards)

$\mathbf{P}[X_6 Q_{5r}] = \mathbf{P}[r \to t] \mathbf{P}[X_6 Q_{6t}]$	= (1.0)(0.9) = 0.90
$\mathbf{P}[X_6 Q_{5h},Q_{6h}] = \mathbf{P}[h \rightarrow h] \mathbf{P}[X_6 Q_{6h}]$	= (0.8)(0.1) = 0.08
$\mathbf{P}[X_6 Q_{5h},Q_{6r}] = \mathbf{P}[h \rightarrow r] \mathbf{P}[X_6 Q_{6h}]$	= (0.2)(0.5) = 0.10
$\mathbf{P}[X_6 Q_{5h}] = \mathbf{P}[X_6 Q_{5h},Q_{6h}] + \mathbf{P}[X_6 Q_{5h},Q_{6r}]$	= 0.08 + 0.10 = 0.18

4th step

$$\begin{split} \mathbf{P}[X_{5-6}|Q_{4r}] &= \mathbf{P}[r \to t] \, \mathbf{P}[X_5|Q_{5t}] \, \mathbf{P}[X_6|Q_{5t}] &= (1.0)(0.9)(0.9) = \mathbf{0.81} \\ \mathbf{P}[X_{5-6}|Q_{4h},Q_{5r}] &= \mathbf{P}[h \to r] \, \mathbf{P}[X_5|Q_{5r}] \, \mathbf{P}[X_6|Q_{5r}] &= (0.2)(0.5)(0.9) = \mathbf{0.09} \\ \mathbf{P}[X_{5-6}|Q_{4h},Q_{5h}] &= \mathbf{P}[h \to h] \, \mathbf{P}[X_5|Q_{5h}] \, \mathbf{P}[X_6|Q_{5h}] &= (0.8)(0.1)(0.18) = \mathbf{0.0144} \\ \mathbf{P}[X_{5-6}|Q_{4h}] &= \mathbf{P}[X_{5-6}|Q_{4h},Q_{5r}] + \mathbf{P}[X_{5-6}|Q_{4h},Q_{5h}] &= 0.09 + 0.0144 = \mathbf{0.1044} \end{split}$$

3th step

$$\begin{split} \mathbf{P}[X_{4-6}|Q_{3r}] &= \mathbf{P}[r \to t] \, \mathbf{P}[X_4|Q_{4t}] \, \mathbf{P}[X_{5-6}|Q_{4t}] &= (1.0)(0.9)(0.81) = \mathbf{0.729} \\ \mathbf{P}[X_{4-6}|Q_{3h},Q_{4r}] &= \mathbf{P}[h \to r] \, \mathbf{P}[X_4|Q_{4r}] \, \mathbf{P}[X_{5-6}|Q_{4r}] &= (0.2)(0.5)(0.81) = \mathbf{0.081} \\ \mathbf{P}[X_{4-6}|Q_{3h},Q_{4h}] &= \mathbf{P}[h \to h] \, \mathbf{P}[X_4|Q_{4h}] \, \mathbf{P}[X_{5-6}|Q_{4h}] &= (0.8)(0.1)(0.1044) = \mathbf{0.008352} \\ \mathbf{P}[X_{4-6}|Q_{3h}] &= \mathbf{P}[X_{4-6}|Q_{3h},Q_{4t}] + \mathbf{P}[X_{4-6}|Q_{3h},Q_{4h}] &= \mathbf{0.081} + \mathbf{0.008352} = \mathbf{0.089352} \end{split}$$

2nd step

$$\begin{split} \mathbf{P}[X_{3-6}|Q_{2r}] &= \mathbf{P}[r \to t] \, \mathbf{P}[X_3|Q_{3t}] \, \mathbf{P}[X_{4-6}|Q_{3r}] &= (1.0)(0.1)(0.729) = \mathbf{0.0729} \\ \mathbf{P}[X_{3-6}|Q_{2h},Q_{3r}] &= \mathbf{P}[h \to r] \, \mathbf{P}[X_3|Q_{3r}] \, \mathbf{P}[X_{4-6}|Q_{3r}] &= (0.2)(0.5)(0.729) = \mathbf{0.0729} \\ \mathbf{P}[X_{3-6}|Q_{2h},Q_{3h}] &= \mathbf{P}[h \to h] \, \mathbf{P}[X_3|Q_{3h}] \, \mathbf{P}[X_{4-6}|Q_{3h}] &= (0.8)(0.9)(0.089352) = \mathbf{0.0643334} \\ \mathbf{P}[X_{3-6}|Q_{2h}] &= \mathbf{P}[X_{3-6}|Q_{2h},Q_{3t}] + \mathbf{P}[X_{3-6}|Q_{2h},Q_{3h}] &= \mathbf{0.0729} + \mathbf{0.0643334} = \mathbf{0.137233} \end{split}$$

1st step

$$\begin{split} \mathbf{P}[X_{2-6}|Q_{1r}] &= \mathbf{P}[r \to t] \, \mathbf{P}[X_2|Q_{2t}] \, \mathbf{P}[X_{3-6}|Q_{2r}] &= (1.0)(0.1)(0.0729) = \mathbf{0.00729} \\ \mathbf{P}[X_{2-6}|Q_{1h},Q_{2r}] &= \mathbf{P}[h \to r] \, \mathbf{P}[X_2|Q_{2r}] \, \mathbf{P}[X_{3-6}|Q_{2r}] &= (0.2)(0.5)(0.0729) = \mathbf{0.00729} \\ \mathbf{P}[X_{2-6}|Q_{1h},Q_{2h}] &= \mathbf{P}[h \to h] \, \mathbf{P}[X_2|Q_{2h}] \, \mathbf{P}[X_{3-6}|Q_{2h}] &= (0.8)(0.9)(0.137233) = \mathbf{0.0988078} \\ \mathbf{P}[X_{2-6}|Q_{1h}] &= \mathbf{P}[X_{2-6}|Q_{1h},Q_{2t}] + \mathbf{P}[X_{2-6}|Q_{1h},Q_{2h}] &= \mathbf{0.00729} + \mathbf{0.0988078} = \mathbf{0.106098} \end{split}$$

Now we multiply the forward and backward probabilities to obtain $P[Q_i = Z_k | X]$ for all combinations of step i and state k.

step i	state k	α_{ik}	β_{ik}	$\alpha_{ik} \beta_{ik}$	
1	Z_{h}	0.9	0.106098	0.0954882	
	$Z_{r}^{''}$	0	0.00729	0	
	$Z_t^{'}$	0	0.00729	0	
2	Z_h	0.648	0.137233	0.088927	
	Z_r	0.09	0.0729	0.006561	
	Z_t	0	0.0729	0	
3	Z_h	0.46656	0.089352	0.0416881	
	Z_r	0.0648	0.729	0.0472392	
	Z_t	0.009	0.729	0.006561	
4	Z_h	0.0373248	0.1044	0.00389671	
	Z_r	0.046656	0.81	0.0377914	
	Z_t	0.06642	0.81	0.0538002	
5	Z_h	0.00298598	0.18	0.000537476	
	Z_r	0.00373248	0.9	0.00335923	
	Z_t	0.1016784	0.9	0.0915106	
6	Z_h	0.000238878	1	0.000238878	
	Z_r	0.000298598	1	0.000298598	
	Z_t	0.09486983	1	0.09486983	
The posterior decoding is obtained by concatenating the maximum probability state in					
each time stop (shown in hold in the preceding table)					

each time step (shown in bold in the preceding table). We obtain $Z_h Z_h Z_r Z_t Z_t Z_t$. Rather boring result in that in this case it happens to be the same as the Viterbi path.