
Midterm exam, Genome Informatics 20221025 Write your name on each sheet.

The model is a "left-to-right" model, always starting in state Z_h . The observed output sequence is X = HHHTTT.

Notation

Here I suggest some notation to use when showing your work.

Let $P[X_{1-i}]$ be a shorthand for the first *i* letters of the output, e.g. $P[X_{1-4}] = \text{HHHT}$. Use *Q* to denote a hidden state sequence, Q_i is the hidden state at time step *i*. For brevity let Q_{ik} denote $Q_i = Z_k$, e.g. Q_{4r} means the model was in state Z_r in time step 4. To further simplify notation you may use $P[h \rightarrow r]$ as a shorthand for the transition probability $P[Q_{i+1} = Z_r | Q_i = Z_h]$.

You will work with numerical values.

We will consider any answer correct in the first 3 digits to be correct. But please write as many digits as possible, as this can help us trace your work. (為了幫助我們確認你的計算,請盡量不要四捨五入)

Problem 1.

What is the probability of the output X given the model, $P[X|\lambda, len(X) = 6]$?

Problem 2.

What is the maximum likelihood state sequence (Viterbi decoding)? What is the likelihood of that sequence?

In other words, compute $\mathbf{P}[Q^*|X]$,

where Q^* denotes the maximum likelihood path: $\arg \max_{Q \in \{\mathbf{Q}_{1-6}\}} \mathbb{P}[Q|X_{1-6}]$. and \mathbf{Q}_{1-6} denotes the set of all state sequences of length 6.

For intermediate calculations, use δ_{ik} to denote: $\max_{Q \in \{\mathbf{Q}_{1-ik}\}} \mathbf{P}[Q|X_{1-i}]$, where \mathbf{Q}_{1-ik} denotes the set of all state sequences of length i, ending in state Z_k .

Problem 3.

What is the posterior decoding? In other words, what is the state sequence: $Q^M = Q_1^M Q_2^M \cdots Q_6^M$ where $Q_i^M \stackrel{\text{def}}{=} \max_{k \in \{Z_h, Z_r, Z_t\}} \mathbb{P}[Q_i = Z_k | X].$

For each position i and state $k \in \{Z_h, Z_r, Z_t\}$, give the probability $P[Q_i = Z_k | X]$. *Hint:* Note that the fact that some transitions have probability one can be used to simplify the backward algorithm computation.