Midterm exam，Genome Informatics 20221025 Write your name on each sheet．

	Z_{h}	Z_{r}	Z_{t}
H	0.9	0.5	0.1
T	0.1	0.5	0.9

Emission probabilities of $\{H, T\}$ for the 3 states．

The model is a＂left－to－right＂model，always starting in state Z_{h} ．
The observed output sequence is $X=$ HННTTT．

Notation

Here I suggest some notation to use when showing your work．
Let $\mathrm{P}\left[X_{1-i}\right]$ be a shorthand for the first i letters of the output，e．g． $\mathrm{P}\left[X_{1-4}\right]=$ HHHT．
Use Q to denote a hidden state sequence，Q_{i} is the hidden state at time step i ．For brevity let $Q_{i k}$ denote $Q_{i}=Z_{k}$ ，e．g．$Q_{4 r}$ means the model was in state Z_{r} in time step 4.
To further simplify notation you may use $\mathrm{P}[h \rightarrow r]$ as a shorthand for the transition proba－ bility $\mathrm{P}\left[Q_{i+1}=Z_{r} \mid Q_{i}=Z_{h}\right]$ ．

You will work with numerical values．
We will consider any answer correct in the first 3 digits to be correct．
But please write as many digits as possible，as this can help us trace your work．
（爲了幫助我們確認你的計算，請笽量不要四捨五入）

Problem 1.
What is the probability of the output X given the model, $\mathrm{P}[X \mid \lambda, \operatorname{len}(X)=6]$?

Problem 2.

What is the maximum likelihood state sequence (Viterbi decoding)?
What is the likelihood of that sequence?
In other words, compute $\mathrm{P}\left[Q^{*} \mid X\right]$,
where Q^{*} denotes the maximum likelihood path: $\arg \max _{Q \in\left\{\mathbf{Q}_{1-6}\right\}} \mathrm{P}\left[Q \mid X_{1-6}\right]$. and $\mathbf{Q}_{1-\mathbf{6}}$ denotes the set of all state sequences of length 6 .

For intermediate calculations, use $\delta_{i k}$ to denote: $\max _{Q \in\left\{\mathbf{Q}_{1-\mathbf{i k}}\right\}} \mathrm{P}\left[Q \mid X_{1-i}\right]$, where $\mathbf{Q}_{1-\mathbf{i k}}$ denotes the set of all state sequences of length i, ending in state Z_{k}.

Problem 3.

What is the posterior decoding?
In other words, what is the state sequence: $Q^{M}=Q_{1}^{M} Q_{2}^{M} \cdots Q_{6}^{M}$ where $Q_{i}^{M} \stackrel{\text { def }}{=} \max _{k \in\left\{Z_{h}, Z_{r}, Z_{t}\right\}} \mathrm{P}\left[Q_{i}=Z_{k} \mid X\right]$.

For each position i and state $k \in\left\{Z_{h}, Z_{r}, Z_{t}\right\}$, give the probability $\mathrm{P}\left[Q_{i}=Z_{k} \mid X\right]$.
Hint: Note that the fact that some transitions have probability one can be used to simplify the backward algorithm computation.

