Final exam, Genome Informatics 20221228 Write your <u>name</u> on each sheet.

Name & student ID: .

	В	\mathbf{C}	D
\mathbf{A}	9	6	4
В	х	13	9
\mathbf{C}	х	х	8

Problem 1.

Use UPGMA to infer a possible tree for leaves **A**,**B**,**C**,**D** (topology & edge lengths) from the distance matrix shown. Discuss if the inferred tree is reasonable.

Solution: We start with each leaf as its own cluster, positioned at a "height" of zero from the bottom of the tree. First we the nearest cluster (leaf) pair, which is dist(A,D) = 4. Let's call that node AD, and note that its "height" from the bottom of the tree should be 4/2 = 2.

Now we compute distances from the internal node AD, to the leaves C and D.

$$\begin{split} \texttt{dist}(\mathbf{B},\mathbf{A}\mathbf{D}) &= \texttt{avg}\{\texttt{dist}(\mathbf{B},\mathbf{A}),\texttt{dist}(\mathbf{B},\mathbf{D})\} = \texttt{avg}\{9,9\} = 9\\ \texttt{dist}(\mathbf{C},\mathbf{A}\mathbf{D}) &= \texttt{avg}\{\texttt{dist}(\mathbf{C},\mathbf{A}),\texttt{dist}(\mathbf{C},\mathbf{D})\} = \texttt{avg}\{6,8\} = 7 \end{split}$$

The other distance is $dist(\mathbf{B}, \mathbf{C}) = 13$. $dist(\mathbf{C}, \mathbf{AD}) = 7$ is the smallest of the three, so we merge it to form $\mathbf{C}:\mathbf{AD}$ with a height of 7/2 = 3.5. Distance between **B** and $\mathbf{C}:\mathbf{AD}$ is the average distance between **B** and any sequence in $\{\mathbf{A}, \mathbf{C}, \mathbf{D}\}$.

 $\texttt{dist}(\mathbf{B}, \mathbf{C} : \mathbf{AD}) = \texttt{avg}\{\texttt{dist}(\mathbf{B}, \mathbf{C}), \texttt{dist}(\mathbf{B}, \mathbf{A}), \texttt{dist}(\mathbf{B}, \mathbf{D})\} = \texttt{avg}\{13, 9, 9\} = 10\frac{1}{3}$

Finally the root node must be the direct ancestor of **B** and **C**:**AD**, and should be placed at a height of $10\frac{1}{3}/2 = 5\frac{1}{6}$.

Is the tree reasonable? Not really, because the distances implied by the tree are different from the given distance matrix:

	B	\mathbf{C}	D		B	\mathbf{C}	D	
Α	9	6	4	Α	7	9	4	
В	x	13	9	В	x	9	7	
\mathbf{C}	х	х	8	С	x	х	9	
Give	en Di	istan	ces	Dist	ance	s im	plied	by tree.

We could have predicted this in advance by noting that the distances given in the distance matrix are not ultrametric. For example the distances between A, B, and C are all different {9,6,13}, but to be an ultrametric two of those distances would have to be the same and the third one smaller (or equal).

Name & student ID: _

	В	\mathbf{C}	D
\mathbf{A}	9	6	4
В	х	13	9
\mathbf{C}	х	х	8

Problem 2.

Use Saitou Nei Neighbor Joining (NJ) to infer a possible tree for leaves **A**,**B**,**C**,**D** (topology & edge lengths) from the distance matrix shown.

Solution: For a set of leaves L of size n, with distances $\forall_{i\neq j} D(i, j) > 0$, $\forall_i D(i, i) \equiv 0$; NJ merges according to minimizing a kind of normalized distance known as the neighbor joining function:

In mathematical notation, merge the two leaves x and y which minimize:

$$\mathrm{NJ}(x,y) \stackrel{\mathrm{\tiny def}}{=} (n-2) \mathrm{D}(x,y) - (\sigma_x + \sigma_y)$$

Where we define $\sigma_i \stackrel{\text{def}}{=} \sum_{i \in T} \mathsf{D}(i, x)$ as the total distance from leaf x to any other leaf. (the book Biological Sequence Analysis uses notation $r_x \stackrel{\text{def}}{=} \frac{\sigma_x}{n-2}$)

	$\sigma_{\mathbf{A}} = 9 + 6 + 4 = 19$	$\sigma_{\mathbf{C}} = 6 + 13 + $	8 = 27
	$\sigma_{\bf B}= \ 9+13+ \ 9=31$	$\sigma_{\rm D} = \ 4 + \ 9 +$	8 = 21
1	D	C	D
	В	C	D
Α	(2)(9) - (19 + 31) = -32	(2)(6) - (19 + 27) = -34	(2)(4) - (19 + 21) = -32
В	х	(2)(13) - (31 + 27) = -32	(2)(9) - (31 + 21) = -34
С	Х	х	(2)(8) - (27 + 21) = -32

NJ function value of each pair of leaves

The minimal (most negative) value is -34, so leaves **B**,**D** should be assigned a parent which we denote as **BD**. **BD** should be added to the tree with a distance of:

$$\begin{aligned} \operatorname{dist}(\mathbf{B}, \mathbf{BD}) &= \left(\frac{1}{2}\right) \left(\operatorname{dist}(\mathbf{B}, \mathbf{D}) - \frac{\sigma_{\mathbf{D}} - \sigma_{\mathbf{B}}}{n-2}\right) = \left(\frac{1}{2}\right) \left(9 - \frac{21 - 31}{4-2}\right) = 7\\ \operatorname{dist}(\mathbf{D}, \mathbf{BD}) &= \left(\frac{1}{2}\right) \left(\operatorname{dist}(\mathbf{B}, \mathbf{D}) - \frac{\sigma_{\mathbf{B}} - \sigma_{\mathbf{D}}}{n-2}\right) = \left(\frac{1}{2}\right) \left(9 - \frac{31 - 21}{4-2}\right) = 2\end{aligned}$$

Distances from other leaves to **BD** are the average distance from the leaf to **B** and **D**, minus the average distance from **BD** to **B** and **D**.

$$D(\mathbf{A}, \mathbf{BD}) = (\frac{1}{2}) \Big(D(\mathbf{A}, \mathbf{B}) + D(\mathbf{A}, \mathbf{D}) - D(\mathbf{B}, \mathbf{D}) \Big) = (\frac{1}{2})(9 + 4 - 9) = 2$$
$$D(\mathbf{C}, \mathbf{BD}) = (\frac{1}{2}) \Big(D(\mathbf{C}, \mathbf{B}) + D(\mathbf{C}, \mathbf{D}) - D(\mathbf{B}, \mathbf{D}) \Big) = (\frac{1}{2})(13 + 8 - 9) = 6$$

The distance matrix of the tree after merging ${\bf B}$ and ${\bf D}$ is:

	BD	\mathbf{C}
Α	2	6
BD	X	6

NJ infers unrooted trees, and there is only one possible topology (a kind of star topology) for an unrooted tree with three leaves, so we are essentially done. Let **cen** denote the center of the "star".

We can arbitrarily choose a pair to merge and the results should be equivalent. For example if we merge \mathbf{A} , \mathbf{BD} to form cen, the distance from the remaining leaf \mathbf{C} to cen should be one half $dist(\mathbf{C}, \mathbf{A}) + dist(\mathbf{C}, \mathbf{BD})$ - $dist(\mathbf{A}, \mathbf{BD})$.

$$D(C, cen) = \frac{1}{2}(6+6-2) = 5$$

Therefore D(A, cen) = D(BD, cen) = 6 - 5 = 1

Name & student ID: _____

Problem 3.

Use Maximum Parsimony to reconstruct possible sequences of the ancestor nodes for the tree on the following page. Use notation like [ac] to represent sets. For example "t [ac]" denotes t followed by either a or c.

Name & student ID: _____

Problem 4.

Assuming the following symmetric substitution costs:

Use weighted weighted parsimony to compute the minimum cost of each possible nucleotide for each blank in the tree on the following page.

For notation use vectors in the order [a c g t], for example [6 3 2 5] denotes a minimum cost of 6, 3, 2 or 5; conditioned on the base in that sequence being a,c,g, or t, respectively.

