Final exam, Genome Informatics 20221228 Write your name on each sheet.

Name \& student ID:

	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	9	6	4
\mathbf{B}	x	13	9
\mathbf{C}	x	x	8

Problem 1.
Use UPGMA to infer a possible tree for leaves $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ (topology \& edge lengths) from the distance matrix shown. Discuss if the inferred tree is reasonable.

Name \& student ID:

	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	9	6	4
\mathbf{B}	x	13	9
\mathbf{C}	x	x	8

Problem 2.
Use Saitou Nei Neighbor Joining (NJ) to infer a possible tree for leaves A,B,C,D (topology \& edge lengths) from the distance matrix shown.

Name \& student ID:

Problem 3.

Use Maximum Parsimony to reconstruct possible sequences of the ancestor nodes for the tree on the following page. Use notation like [ac] to represent sets. For example "t [ac]" denotes t followed by either a or c.

Name \& student ID:

Problem 4.

Assuming the following symmetric substitution costs:

	c	g	t
a	3	2	3
c	x	3	2
g	x	x	3

Use weighted weighted parsimony to compute the minimum cost of each possible nucleotide for each blank in the tree on the following page.
For notation use vectors in the order [a c g t], for example [$\left.\begin{array}{llll}6 & 3 & 2 & 5\end{array}\right]$ denotes a minimum cost of $6,3,2$ or 5 ; conditioned on the base in that sequence being a, c,g, or t, respectively.

