Final exam, Genome Informatics 20221228 Write your \underline{name} on each sheet.

Name & student ID:

Problem 1.

Use UPGMA to infer a possible tree for leaves $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ (topology & edge lengths) from the distance matrix shown. Discuss if the inferred tree is reasonable.

Name & student ID: _____

	В	\mathbf{C}	D
\mathbf{A}	9	6	4
\mathbf{B}	X	13	9
\mathbf{C}	X	X	8

Problem 2.

Use Saitou Nei Neighbor Joining (NJ) to infer a possible tree for leaves $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ (topology & edge lengths) from the distance matrix shown.

Name & student ID:	

Problem 3.

Use Maximum Parsimony to reconstruct possible sequences of the ancestor nodes for the tree on the following page. Use notation like [ac] to represent sets. For example "t [ac]" denotes t followed by either a or c.

Name & student ID:	

Problem 4.

Assuming the following symmetric substitution costs:

Use weighted weighted parsimony to compute the minimum cost of each possible nucleotide for each blank in the tree on the following page.

For notation use vectors in the order [a c g t], for example [6 3 2 5] denotes a minimum cost of 6, 3, 2 or 5; conditioned on the base in that sequence being a,c,g, or t, respectively.

