
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zed) Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Strings A lgorithm s and Machine Learning Applications for
Com putational B iology

by

Paul Brice Horton II

B.S. (University of Washington) 1989
M.S. (Kyoto University) 1992

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION
of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Dan Gusfield, Co-Chair
Professor John Canny, Co-Chair
Professor Gerry Rubin
Professor Christos Papadimitriou

1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9828736

UMI Microform 9828736
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Strings Algorithms and Machine Learning Applications for
Computational B iology

Copyright 1997

by
Paul Brice Horton II

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The dissertation of Paul Brice Horton II is approved:

Co-Chair
t , /*?*

Date

P o t i$ /m 7

kt-Hji i

Date

University of California at Berkeley

1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To the memory of Eugene Lawler,

without whom this work would not have begun.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

C ontents

List o f Figures v

List o f Tables vi

1 Introduction 1
1.1 Introduction.. 2

1.1.1 Motivation .. 2
1.1.2 O v erv iew .. 4
1.1.3 Calculating Edit Distance with the four Russian’s Technique 4
1.1.4 Efficiency of the Am Algorithm for Multiple String Alignment 4
1.1.5 Learning to Classify Protein Sequences by their Cellular Localization

S ite s .. 5
1.2 Bibliography ... 6

1 S tr in g A lgorithm s 7

2 Local Multiple String Alignment 8
2.1 Introduction.. 9
2.2 Problem Formulation.. 10
2.3 An Exhaustive A lg o rith m .. 11
2.4 Heuristic Search ... 12
2.5 Branch and B o u n d ... 13
2.6 Proof of the B o u n d ... 14
2.7 Precomputation and Heuristic Speedup ... 17

2.7.1 Precomputation .. 17
2.7.2 Heuristic Input Ordering S p e e d u p ... 18

2.8 D ata Sets 18
2.8.1 LexA Data S e t ... 18
2.8.2 Artificial D a t a ... 19

2.9 R esults... 20
2.9.1 LexA D a ta se t.. 20
2.9.2 Artificial D a ta s e t .. 23

2.10 Discussion.. 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

2.10.1 Appropriateness of the Scoring Function.. 25
2.10.2 Summary and Future D ire c tio n s .. 26

2.11 Bibliography ... 30

3 Calculating Edit Distance with the four Russian’s Technique 32
3.1 Introduction.. 33
3.2 Four Russians for Edit D istance ... 33
3.3 Saving Space with Canonical S tr in g s ... 35

3.3.1 Canonical S trings... 35
3.3.2 S a v in g s .. 36
3.3.3 Complexity with Large Alphabet S izes... 37

3.4 Empirical Study of Performance .. 39
3.4.1 On Demand Submatrix Calculation .. 39

3.5 Simulation... 39
3.6 D a tase ts .. 39
3.7 All Pairs Edit Distance... 41
3.8 Algorithms and Cost Models .. 41
3.9 Results... 42

3.9.1 Simulation D a t a .. 42
3.9.2 T rad e o ffs ... 42
3.9.3 Conclusions.. 45

3.10 S u m m a ry .. 60
3.11 Acknowledgements... 60
3.12 Bibliography .. 61
3.13 Appendix 1 ... 61
3.14 Appendix 2 ... 61
3.15 Appendix 3 ... 61

4 Efficiency of the A* Algorithm for Multiple String Alignment 64
4.1 Introduction... 65
4.2 Algorithms for Multiple A lig n m en t.. 66

4.2.1 Definitions and N ota tion ... 66
4.2.2 Multiple Sequence Alignment and Dynamic Program m ing................. 67
4.2.3 Carrillo & Lipman’s A lg o rith m ... 68
4.2.4 A* versus Kececioglu’s branch and bound a lg o rith m 74

4.3 A* Dominates Carrillo & Lipman’s A lgorithm .. 75
4.3.1 A* Never Expands a Vertex T w ic e .. 75
4.3.2 A* Expands Fewer Vertices than Carrillo & L ip m a n 76

4.4 Conclusion ... 78
4.5 Bibliography .. 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I I A p p lic a t io n o f M a c h in e L e a rn in g 81

5 L earn ing to C lassify P ro te in Sequences by th e ir C ellu la r Localization
S ites 82
5.1 Introduction... 83
5.2 Protein L o ca liza tion ... 85

5.2.1 Membranes and C om partm ents... 85
5.2.2 Localization in E.coli... 85
5.2.3 Localization in Y eas t... 86

5.3 D a tase ts ... 89
5.3.1 Sequences.. 89
5.3.2 E.coli classes and fea tu re s .. 89
5.3.3 Yeast classes and fe a tu re s .. 89
5.3.4 Dataset Issues ... 90

5.4 Probabilistic M odel.. 92
5.4.1 Model D efin itio n .. 92
5.4.2 Classification Trees for E.coli and Y e a s t ... 93
5.4.3 Conditional Probabilities from Continuous V ariab les 95
5.4.4 Fayyad-Irani b in n in g ... 95
5.4.5 Sigmoid Conditional Probability F unction .. 96

5.5 Study 1: Different Binning Strategies with the Classification T r e e s 96
5.5.1 Results of Study 1 .. 96
5.5.2 Attempted Extensions to the Probabilistic M odel............................... 98
5.5.3 Discussion of Study 1 .. 99

5.6 Study 2: Comparison of Four C lassifiers... 100
5.6.1 k Nearest N e ig h b o rs ... 100
5.6.2 Binary Decision T re e ... 101
5.6.3 Naive Bayes C la ss ifie r.. 101
5.6.4 Evaluation M ethodology... 103
5.6.5 Results of Study 2 .. 104
5.6.6 k P aram eter... 104
5.6.7 Local Alignment Distance with fcNN ... 105
5.6.8 Confusion M atrices.. 105

5.7 Discussion of Study 2 106
5.8 Study 3: Finding Substring Features from Protein Sequence D a ta 108
5.9 System O verview ... 108

5.9.1 Counting Substring Occurrences with the Suffix T re e 108
5.9.2 Feature S e lection ... 109
5.9.3 Classifier for Study 3 ... 109
5.9.4 Distribution of Significant Substrings... 109
5.9.5 Results and Discussion of Study 3 .. 110

5.10 Chapter D iscussion... I l l
5.10.1 Modeling vs. Leveraging All C o rre la tio n s .. I l l
5.10.2 Other A pplications... 112

5.11 Softw are.. 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.12 Acknowledgments
5.13 Bibliography . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

List of Figures

1.1 The growth of the amount of DNA sequence data in GenBank is shown. . . 3

2.1 Running time versus motif strength is shown for artificial data....................... 24
2.2 The columns of three hypothetical alignments and their observed base fre­

quencies are shown... 27
2.3 The use of dummy sequences to implement a Laplacian regularizer is shown. 29

3.1 A submatrix of a standard dynamic programming table is shown................... 34
3.2 A submatrix of a dynamic programming table using relative offsets instead

of absolute edit distances is shown.. 34
3.3 A submatrix of a dynamic programming table using the canonical form of

substrings for input is shown... 35
3.4 The memory use of the canonicalized and standard four Russians algorithm

are shown for pairs of artificial sequences of different lengths............................ 46
3.5 The time required for various values of A is shown for dynamic programming,

the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
aligned strings were of length 400 and t was set to t = 3................................... 47

3.6 The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
aligned strings were of length 15000 and t was set to t = 3............................... 48

3.7 The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
aligned strings were of length 798 and t was set to t = 4................................... 49

3.8 The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
aligned strings were of length 15000 and t was set to t = 4............................... 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ix

3.9 The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
aligned strings were of length 3200 and t was set to t = 5................................. 51

3.10 The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
aligned strings were of length 15000 and t was set to t = 5............................... 52

3.11 The time required for various values of A is shown for different algorithms
and values of t ... 53

3.12 The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
edit distance of all pairs of the 5S RNA sequences was computed with t = 3. 54

3.13 The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
edit distance of all pairs of the 5S RNA sequences was computed with t = 4. 55

3.14 The time required to comput the edit distance of all pairs of the 5S RNA
seqeunces for various values of A is shown for different algorithms and values
of t .. 56

3.15 The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
edit distance of all pairs of the LexA sequences was computed with t = 3. . 57

3.16 The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians
algorithm with and without a separate cache for canonicalized strings. The
edit distance of all pairs of the LexA sequences was computed with t = 4. . 58

3.17 The time required to comput the edit distance of all pairs of the LexA seqe­
unces for various values of A is shown for different algorithms and values of
t .. 59

4.1 A schematic drawing of the vertices which might be explored using A ” with
an edit graph of three sequences is shown.. 74

5.1 A schematic depiction of the membranes and compartments of Gram-negative
Bacteria is shown.. 87

5.2 A schematic depiction of the membranes and compartments of a yeast cell is
shown... 88

5.3 An example classification tree and its equivalent Bayesian network represen­
tation is shown... 93

5.4 The classification tree used for E.coli protein localization is shown................. 94
5.5 The classification tree used for yeast protein localization is shown.......................114
5.6 The use of the fcNN classifier to classify objects with two features is shown. 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

5.7 The use of the binary decision classifier to classify objects with two features
is shown... 116

5.8 The accuracy of ANN for the E.coli dataset is shown for odd A from 1 to 33.
The accuracy of the decision tree, Naive Bayes, and HN is also shown. . . . 117

5.9 The accuracy of ANN for the yeast dataset is shown for odd k from 1 to 99.
The accuracy of the decision tree, Naive Bayes, and HN is also shown. . . . 117

5.10 An overview of the generation, selection, and use of substring features is shown.118
5.11 A histogram of the distribution of substrings which correlate significantly to

at least one class is shown.. 119
5.12 The decision tree induced from the first partition of cross-validation with the

substring features that passed the first statistical test is shown....................... 120
5.13 The decision tree induced from the second partition of cross-validation with

the substring features that passed the first statistical test is shown................ 121
5.14 The decision tree induced from the third partition of cross-validation with

the substring features that passed the first statistical test is shown................ 122
5.15 The decision tree induced from the fourth partition of cross-validation with

the substring features that passed the first statistical test is shown................ 123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

List o f Tables

2.1 Pseudocode for the branch and bound algorithm is shown................................ 15
2.2 The solution found on the LexA dataset with a window width of 24 is shown. 21
2.3 Results for the branch and bound program on the LexA dataset with a win­

dow width of 24. The number of nodes surviving a t each level of the search
tree for which pruning is done is shown... 21

2.4 Results for the branch and bound program on the LexA dataset with a win­
dow width of 22. The number of nodes surviving a t each level of the search
tree for which pruning is done is shown... 22

2.5 Results for the branch and bound program on the LexA dataset with a win­
dow width of 24. The number of nodes surviving a t each level of the search
tree for which pruning is done is shown... 22

2.6 A comparison of the scores of solutions found by the beam search versus
those found by Stormo & Hartzell’s heuristic is shown...................................... 23

3.1 Formulas for the number of canonical strings of length t are shown for alpha­
bet sizes of 2, 3, and 4... 37

3.2 The number of canonical strings for different length strings and alphabet
sizes a are shown with the ratio of the number of possible strings without
canonicalizing to the number of canonical strings. The upper bound on tha t
ratio, o-!, is also shown... 38

3.3 Pseudocode for efficiently computing canonical strings is shown..................... 40
3.4 The parameterized running time of four string comparison algorithms under

a simplified cost model is shown.. 42
3.5 The results of aligning pairs of strings with equal lengths is shown. The

number of submatrices with and without canonicalizing and the number of
pairs of substrings are shown for different string lengths and values of f. The
strings are randomly generated strings over an alphabet of size four.............. 43

3.6 The number of submatrices with and without canonicalizing and the number
of pairs of substrings are shown for different values of £, for all pairs alignment
of the 5S RNA datase t.. 44

3.7 The number of submatrices with and without canonicalizing and the number
of pairs of substrings are shown for different values of t, for all pairs alignment
of the LexA da tase t... 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xii

4.1 Dynamic programming tables for the three possible pairings of the strings
“eugene” , “marcio, and “brice” are shown... 71

4.2 The last row of the previous table is shown here, modified to reflect the effect
of knowing better upper bounds on the cost of the two-way alignments. . . 72

4.3 Pseudocode for the Am algorithm (assuming the consistency condition holds). 73

5.1 The first (i.e. N-terminal) few amino acids of several proteins which function
as eukaryotic signal sequences are shown.. 87

5.2 The names, abbreviations and number of occurrences of each class for the
E.coli dataset are shown.. 90

5.3 A description of the E.coli features and their names are shown...................... 91
5.4 The names, abbreviations and number of occurrences of each class for the

yeast dataset are shown... 91
5.5 A description of the yeast features and their names are shown....................... 92
5.6 The accuracy of classifying E.coli proteins by three different strategies for

learning conditional probabilities of continuous variables is shown................. 97
5.7 The accuracy of classifying yeast proteins by three different strategies for

learning conditional probabilities of continuous variables is shown................. 97
5.8 The accuracy of classification of E.coli proteins is displayed for each class

when all of the d a ta was used for training.. 97
5.9 The accuracy of classification of yeast proteins is displayed for each class

when all of the d a ta was used for training.. 98
5.10 Pseudocode for binary decision tree learning is shown...................................... 102
5.11 The results of cross-validation of the four classifiers on the E.coli data is shown.104
5.12 The results of cross-validation of the four classifiers on the yeast data is shown. 105
5.13 The confusion m atrix for the E.coli dataset with ANN is s h o w n 106
5.14 The confusion m atrix for the yeast dataset with ANN is shown 106
5.15 The accuracy obtained with 4-fold stratified cross-validation with the binary

decision tree is shown for different feature sets.. I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A cknow ledgem ents

I would like to thank Dan Gusfield for working with me, a student from another school, over

a period of several years. Without him this disseratation would not have been possible. I

would also like to thank my colleagues Kevin Murphy, Geoff Zweig, and Daniel Wilkerson;

both for numerous helpful discussions on technical matters, and also for their constant

friendship and good humor. Finally, I would like to thank my sister Jenny, who cheered me

on throughout in the unconditional way tha t only sisters can.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

1.1 Introduction

1.1.1 M otivation

Today computer scientists have a unique opportunity to contribute to the quest

to understand life, and ultimately ourselves. All fields which involve large amounts of da ta

rely on computers for processing that data, however molecular cell biology has a special

relationship to computer science due to the role of the cell as an information processing

machine. Computer scientists can apply many of their concepts to biology. For example,

the property of self-reference required for organisms to reproduce themselves is also central

to the computer science concepts of recursion and computability.

Indeed the analogy between the information contained in living organisms and

computer software is compelling. In this analogy nucleic acid is the storage device for bi­

ological software. The raw DNA sequence of an organism is analogous to a hexadecimal

listing of the binary executable of a suite of programs. After identifying the role of DNA

in inheritance, the first breakthrough in understanding tha t software was the “breaking”

of the genetic code in the early 60’s [4]. In terms of our analogy the genetic code provides

us with a partial disassembler. Partial because it only disassembles the “opcodes” which

correspond to sequences of proteins or RNA molecules and not the promoters and tran­

scriptional regulatory elements which are analogous to the if statements and while loops of

computer programs. Although much has been learned about such control information, the

task of understanding our DNA program is still daunting. Software engineers know that it

is very difficult to understand uncommented, assembly code. Even worse, in the case of the

programs written in our DNA, not only is the code undocumented but it is not even the

product of a rational design.

Despite the magnitude of the problem, rapid progress is being made in the first step

of the process, namely obtaining the program listing itself. The genomes (i.e. entire DNA

sequence) of E. coli, the yeast Saccaromyces cerevisiae, and the nematode C. elegans have

been completely determined. Furthermore rapid progress is being made towards sequencing

the larger genomes of the fruit fly Drosophila melanogaster, humans and mice. Indeed

figure 1.1 shows that the sequence repository GenBank is growing dramatically. The curve

is approximately exponential with a doubling time of 22 months.

This thesis identifies two particular areas where advances will help us understand

this program listing as it becomes available. The first is the development of more efficient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

700

600

500

400

1 300

200

100

1984 1988 19961986 1990 1992

year

Figure 1.1: The amount of DNA sequence data in GenBank is shown. Reproduced with
permission from [5].

algorithms for comparing strings and the second is the development of an effective method­

ology for learning to classify the function of sequences from labeled training examples.

Perhaps the most powerful technique for understanding sequence function at this

point in time is the comparison of sequences to other sequences of known function. This is

necessary because we do not understand the mapping of sequence to function well enough

to understand a sequence in isolation. It is effective because the process of evolution pre­

serves useful sequence patterns. The first three chapters of this thesis contribute to the

understanding of algorithms th a t compare two or more sequences.

Our inability to directly compute function from sequence also motivates another

emerging area of research, the application of machine learning to learn the mapping from

sequence to function from statistical information rather than from first principles. In chapter

4 we describe a successful attem pt to learn such a mapping from sequence data.

The comments and documentation that will allow future generations to understand

DNA programs are slowly being filled in by the painstaking work of molecular biologists.

However, the vast majority of the documentation remains missing. We believe th a t some

of the important remaining comments are destined to be filled by researches trained as

computer scientists. It is our hope this work will contribute in a small way to th a t great

endeavor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

1.1.2 O verview

In this section we describe the organization of this thesis and briefly summarize

each chapter, more detailed introductions can be found at the beginning of each individual

chapter. This thesis is arranged in two parts. The first part is on string comparison

algorithms and consists of the first three chapters. The second part is the final chapter on

the application of machine learning to biology.

Local Multiple Sequence Alignment

This chapter describes results published in the Pacific Symposium on Biocomput­

ing ’96 [1]. The main result is a branch and bound algorithm which increases the number

of sequences for which a popular formulation of local multiple sequence alignment can be

solved from about four to around ten. A minor result is an alternative to the standard

enumerative algorithm which saves a time factor of roughly to/2, where w is the width of

the desired local multiple alignment.

1.1.3 C alcu lating Edit D istance w ith th e four R ussian’s Technique

The main result of this chapter is a modification to the four Russians technique

which allows the edit distance between two strings of length n to be computed in less that

0 (n 2) time, namely 0 (n 2logIogn/logn) time, for alphabets as large as 0 (n). For small,

constant size alphabets the technique does not improve on the asymptotic running time of

the standard four Russians algorithm but is does save a factor of up to cr! space, where a

is the size of the alphabet. The results of simulation for evaluating the tradeoffs between

different algorithms for different submatrix sizes and input sizes is also reported.

1.1.4 Efficiency o f the A * A lgorithm for M ultip le S tring A lignm ent

The main result of this chapter is a proof that the A* algorithm dominates the

much better know precomputational algorithm described by Carillo & Lipman. A minor

result is to point out the relationship of A* to the branch and bound algorithm of Kece-

cioglu which is implemented in the MSA program. It is shown that although Kececioglu’s

algorithm is very similar to A*, it needs to be provided with a good feasible solution to be

effective while A* needs none.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

1.1.5 Learning to C lassify P rotein Sequences b y th e ir Cellular L ocaliza­
tion Sites

The chapter describes results published at the 1996 and 1997 Intelligent Systems

in Molecular Biology conferences [2], [3]. The chapter describes a software system which

predicts the intracellular localization site of proteins from their amino acid sequence. The

problem is posed as a classification problem, mapping expert identified features which can

be computed from the input sequence to localization sites. The software currently uses

the standard k Nearest Neighbors algorithm to do the classification. A new classification

method which can be formulated as a class of Bayesian networks is also introduced. T hat

method and the standard methods of k Nearest Neighbors, decision tree, and Naive Bayes

are compared for the localization problem. The k Nearest Neighbors algorithm showed the

best classification accuracy but our new method has the advantage of being much easier for

the human expert to interpret. We also show anecdotal success in using the suffix tree da ta

structure to identify interesting sequence features.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Bibliography

[1] Paul Horton. A branch and bound algorithm for local multiple alignment. In Pacific

Symposium on Biocomputing ’96, pages 368-383, 1996.

[2] Paul Horton and Kenta Nakai. A probabilistic classification system for predicting the

cellular localization sites of proteins. In Proceeding of the Fourth International Confer­

ence on Intelligent Systems for Molecular Biology, pages 109-115, Menlo Park, 1996.

AAAI Press.

[3] Paul Horton and Kenta Nakai. Better prediction of protein cellular localization sites with

the k nearest neighbors classifier. In Proceeding of the Fifth International Conference

on Intelligent Systems for Molecular Biology, pages 147-152, Menlo Park, 1997. AAAI

Press.

[4] M. Nirenberg and P. Leder. Rna codewords and protein synthesis. Science, 145:1399—

1407, 1964.

[5] Jens Stoye. Divide-and-Conquer Multiple Sequence Alignment. PhD thesis, Universitat

Bielefeld, Postfach 10 01 31, 33501 Bielefeld, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

Part I

String A lgorithm s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

C hapter 2

Local M ultip le String A lignm ent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Abstract

A branch and bound algorithm has been developed to find a set of window
positions in a compilation of sequences with globally maximal information con­
tent. We have also developed an algorithm for brute force evaluation of solutions
which is faster by a factor of the length of the windows than the naive brute force
algorithm. The combination of these two algorithms allows us to solve problems
to optimality that were previously amenable only to heuristic algorithms.

2.1 Introduction

In recent years the amount of DNA and protein sequence available to computer

analysis has increased dramatically. The availability of such sequence data has inspired

formulations of local multiple sequence alignment problems, which are designed to have

solutions that give the positions of local patterns within a collection of sequences. In this

paper we introduce two algorithms for solving Stormo and Hartzell’s formulation of local

multiple sequence alignment [12], whose objective function relates to the entropy of the

proposed patterns. This paper is divided into sections with the following purposes:

• Describe the local multiple sequence alignment formulation in more detail.

• Introduce an exhaustive algorithm.

• Introduce a modification of an earlier heuristic search algorithm.

• Introduce a branch and bound algorithm.

• Prove the validity of the bound used.

• Describe precomputation and an additional heuristic speedup.

• Describe the data sets used in this study.

• Summarize and discuss the results of the algorithms on the data sets.

• Suggest future directions for research and conclude.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

2.2 Problem Formulation

The formulation of local multiple sequence alignment which we use was proposed

by Stormo and Hartzell [12]. The general assumption is that each sequence contains one

substring that provides a biological function. The problem is difficult because the constraints

on the characters in the substring may be somewhat loose. Informally the goal is to select

a substring or window for each string such tha t, for most positions i in the window, the

distribution of the zth character in each window is far away from the expected distribution

based on a prior distribution of characters. More formally, the input is a set of n strings

5i,i>2, . . . , 5 n over a fixed alphabet A, and an integer window length w such tha t w is

between 1 and the length of the shortest string. Let V specify one position in each string,

i.e. V is a vector of length n whose elements u,- are integers satisfying Vi 1 < u,- < /,-, where /,•

is the length of string i. The frequency of a character 6 in V is denoted by the matrix entry

F(V, b), where W Y lb e A ^ i^ ^) = an^ the vector of frequencies for all the characters

at a given set of positions V is denoted F (V). The prior probabilities of the characters is

given by a vector P , with element p& of P representing the prior probability of character b.

We can now define the information content (also known as the relative entropy) introduced

by Schneider et al [11] which provides a measure of the distance between the distributions

F(V) and P . The function is given by

I{V) = £ * * F{V, b) * lo92(F(V , b)/pb).

Schneider et al denote this function Rlequence and use it to extend the standard information

theory entropy,

H i F (V)) = - £ 6eA n v , b) * log2F{V , 6),

to include prior probabilities. Bailey [2] shows tha t I(V) can be interpreted as the ratio

of the likelihood th a t a random character generator that generates characters according

to the distribution F (V) would generate the n characters observed a t position V, to the

likelihood tha t a generator using the distribution P would generate those n characters. The

appropriateness of the scoring function defined here further is considered in the discussion.

We wish to maximize the information content over a window of length w. Thus our evalu­

ation function becomes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

E(V) = j:?S0l I(V + i),

where we abuse notation to denote (ui+i,W 2 + * ,. . . , i ;n+*) as V -hi for ascalar i, and define

E(V) only for V such that Vi 1 < u,- < — w - f 1 to prevent the window from extending

past the end of the sequences. The alignment problem then is to find a V such that E {V)

is maximal.

2.3 An Exhaustive Algorithm

Let I be the length of the longest string. A naive algorithm would calculate the

frequencies for the characters in the n strings for each of the w columns covered by each

possible window position. There are 0 (ln) possible window positions so this would require

0 (w (ln)) calculations of F and 0{nw {ln)) time. However for fixed n, it is possible to remove

the factor of w from the running time. The main observation is this: Let V be a set of

window positions such that Vi u,- < /,• — w, and V' = V + 1 . In other words let V ' be V

shifted one base to the right. Then E(V ') may be obtained as follows:

E (V ‘) = E(V) - I(V) + I(V + to).

Using this observation to good advantage the algorithm is straightforward:

M ax-E < oo

Iterate over all starting vectors V such that at least one element is equal to one and for all

elements V{ of V, 1 < V{ < /,• — w + 1.

B-V<— E S 'n V ' + i)

Do

M ax-E <— max{Max_E, E J /}

E .V t — E .V - I(V) + I(V + to)

V i— V + l
Loop while no element v, of V exceeds /,•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Return M axJE

There are ln — (I — l) n = 0 (n /n_1) starting vectors when at least one element is con­

strained to equal one. Each starting vector requires 0(w n) time for initialization. For all

other vectors, E{V) can be calculated by adding the information content of one column and

subtracting the information of another (actually the value of I(V + w) can be cached to

avoid the need to calculate I(V) w iterations later, thus reducing the information content

calculation to one column per iteration), which requires 0 (n) time per vector. Thus the

overall running time is 0 (n 2wln~1 + n/n), which is 0 (n ln) as long as nw is not much greater

than I. In practice for DNA sequences with n < 7 we precompute the value of I{V) for all

possible vectors V thus reducing the time to 0 (n w ln~l + ln); if array lookups are counted

as constant time operations.

2.4 Heuristic Search

The optimization problem we are concerned with can be formulated as a search

problem over a search tree whose leaves represent each possible choice of window positions.

More formally, the search tree can be constructed as follows: start with a root at level 0,

then give the root /i — w + 1 child nodes representing each possible position for a window

in the first sequence. Likewise for i from 1 to n — 1 give each node at level i /,-+i — w + 1

child nodes to represent the possible choices of the window position in S ,+ i. There is a one

to one correspondence between paths from the root to leaves in the tree and the possible

assignments of the window positions for the sequences.

Stormo and Hartzell [12] used a form of greedy search on the search tree as a heuristic

for quickly finding good, but not necessarily optimal, solutions. Their algorithm actually

performs /i — w + 1 greedy searchs in parallel, one starting from each node a t level 1 of the

tree, and returns the best solution found. The greedy search can be described iteratively

from i = 1 to n — 1. When the level of the current node is i, then for each child of the

current node, calculate the function E[vj, U2 , . , ut+1) (simply denoted E for the rest of this

section) for Si, S2 , . . . , S ,+i, where («i, u2) • • •, u«+i) is the set of window positions implied

by the path from the root to the child node. If there is one child whose path maximizes E

then make that child the current node and iterate. Otherwise in the case of a tie between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

the children at level t + 1 for maximizing E then “split” the search into independent greedy

searches for each child starting with tha t child as its current node.

We applied a similar heuristic that can be described as a kind of beam search. This type

of beam search was suggested for multiple alignment problems by Bacon and Anderson [1].

The algorithm descends the tree in a breadth first search fashion except th a t a t each level

of the tree it only keeps the nodes corresponding to the top k values of E for that level.

The parameter k is user specified. When k is equal to one this type of search is equivalent

to a simple greedy search.

2.5 Branch and Bound

We developed a branch and bound algorithm which uses the same search tree

as the beam search algorithm but finds a guaranteed optimal solution. The algorithm is

essentially depth first search with pruning. An inequality is used to compute an upper

bound on E (V) for any V whose first i elements are determined by the path to the node

at level i of the search tree. In order to describe the bound formally we need to introduce

some more notation. Let

E (v i,v 2, . . . ,V i ,v i+ l^ v n)

= max„i+li„i+Ji..iiVll E[vi, V2 , • • •> un)»

£ ’(u,-+i vn)

— maxu;+liVj+2i...iVn E(v{+i, Ui-(-2 » • • • i vn).

In words, E (vi, v2, . . . , u,-, un) is the optimal value of E (V) for a set of window

positions V which starts with a path to a particular node of the search tree a t level *; while

E (v ,-+i vn) is the optimal value over V ' of the evaluation function E (V ') where V ' is a

set of window positions in sequences S,-+i, S,-+2 , • • •, Sn. The upper bound we use can now

be written as:

n * E (v !, u2, • • •, u,+i ^ vn) <

i * E (v u v2, +

(n - i) * E (v i + 1 un). (2 .1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Note that the second term of the right hand side can be obtained by solving a smaller

version of the original problem. Utilizing that fact we have developed a recursive algorithm

that uses two arrays (which are defined to be global variables) to hold bounds:

Array L is defined such that L[i] will be assigned a lower bound for the maximum
value of E for the sequences 5,-, £,+ 1 , . . Sn,

Array U is initiated to have undefined values for all its elements and will be
assigned values during the execution of the algorithm such that U[i] is ei­
ther undefined or it contains the exact maximal value of E for the sequences
Sii *St’+l) • • • » Sn-

The level a t which the algorithm begins pruning is denoted d, which is a user defined

parameter. A description of the algorithm is given in table 2.1. Pruning is generally

ineffective a t the first 2 levels of the tree, therefore we used d = 3 when the program was

called with less than 8 sequences, i.e. when n — s ta r tse q + 1 < 7, and d — 4 otherwise.

Note that the array L can be computed in one pass of the beam search heuristic by inputing

the sequences in reverse order and letting L[i] be the best candidate for the sequences

Sni Sfi—h • . ., S{.

2.6 P ro o f o f th e Bound

We first prove the inequality for I (V) and then for E{V). Let F , Fo, and Fi be

probability vectors with elements F(6) specifying the probability of generating character b.

Furthermore let the probability vectors satisfy the relation:

V6 e A F(b) = 6F0{b) + (1 - 0)FX(6), 0 < 6 < 1.

Define I analogously with I (V) defined earlier, i.e.

I = H bZ A m * lo g 2 (F { b) /Pb).

Where the p&’s are constants. Define Iq and I \ likewise using Fo and Fx.

Theorem 1 / < OIq + (1 — 6) I \ .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

_____________ Description of Branch and Bound Algorithm____________
Use the beam search heuristic to calculate the values of an array L such
th a t L[i] holds a lower bound for the maximum value of E for the
sequences S;, S,-+i,. . Sn.

Call Program(l).

Program (start seq)

if s ta rtseq > n — d then
Calculate U[startseq] with the exhaustive algorithm
Return U[startseq]

for(i = n to start s eq + d step —1)
if U[i] is undefined U[i\ <— Program(i)

endfor

M axJE < oo

Visit all the nodes at level d of the search tree using the exhaustive
algorithm described above. For each node, use U [startseq + d],
L[startseq], the value of E (v i , V2 , . . vj) for the path
Vi, V2 , . . vj leading to the node, and inequality 2.1 to determine
if the node can be eliminated.

For each node generated tha t cannot be eliminated by inequality 2.1
perform a depth first search,

pruning any node generated that can be eliminated
with the inequality.

For each node generated at level n update M axJE if necessary.

Return M ax-E

Table 2.1: The main function “Program” is recursively called with the argument s ta r tse q
specifying from which sequence “Program” is to begin. For example, if “Program” were
called with s ta rtseq = 5, it would return an optimal solution for input consisting of the
5th through nth sequences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

The meat of the proof is provided by the following lemma:

Lemma 1
H > 0 H o + (l - 0) H i (2.2)

where:

H = - Y , F(b)* log2F(b),
beA

Ho = - y ; F 0(6)* /052Fo(&),
beA

Hx = - ' £ F l (b)*log2Fl (b).
beA

Proof of lemma 1:

The proof closely follows the proof of a similar theorem by Gallager [5]. Consider F , Fo,

and Fi to be probability vectors over the sample space B equal to the space of generating

single characters from the alphabet A. Furthermore consider the probabilities Fo(b) to be

conditioned on a binary variable z with sample space Z = {0,1} such that

Fo(6) = FB lz(6 |0) ,F 1(6) = FBlz(6 |l) .

Let 2 = 0 with probability 9. Then inequality 2.2 is equivalent to the following series of

equations:

H{ B) > £ P r o 6 [z = O]*Fo(6)*fo02Fo(6) +
b

£ Prob[z = 1] * Fi(b) * log2Fi{b)
b

H{B) > E i,z Prob[b, z] * log2{Prob[b\z])

H { B) > H(B\ Z) .

The steps follow from the identity Prob[b, z] = Fro6[z]Pro6[6|z] and the standard informa­

tion theory definitions of H(B) and H(B\ Z) . The last inequality is a well know fact from

information theory. This completes the proof of lemma 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

The proof of theorem 1 follows from lemma 1 by noting that I can be written as: / =

—H — F - C, where C is a vector defined such th a t C(i) = log-ifa). C is a constant vector

with respect to F so we have:

F - C = 0Fo - C + (l - 0) F l -C ,

I - 9I0 - (1 - 0)h = 0HO + (1 - 0)HX - H

By lemma 1 the right hand side of the last equation is less than zero, thus finishing the

proof of theorem 1.

2.7 P recom putation and H euristic Speedup

2.7.1 P recom p u tation

The function I(V) requires the calculation of several logarithms. W ithout pre-

computation those calculations would become a bottleneck, thus we employed two kinds of

precomputation. First, as mentioned in the section on the exhaustive algorithm, for each

possible column of up to 7 characters we precompute the value of I{V) for tha t column.

For nucleic acid sequences this requires 47 + 46 -(- h 4 « 22K double precision numbers

worth of memory. This kind of precomputation is less effective for the larger alphabet size

required for amino acid sequences but precomputing the values for columns of up to 3 or 4

amino acids is possible.

For columns with too many characters to cover with the above form of precomputation

it is still possible to avoid calculating logarithms during the main phase of the algorithm.

The key observation is tha t the character frequencies for which logarithms need to be com­

puted always equal the ratio of the number of times a character is observed, which must be

a nonnegative integer no greater than the number of sequences in the subproblem, divided

by the number of sequences in the subproblem, which can be no greater than n. Thus there

are only 0 (n 2) possible frequencies. To exploit this fact, we precompute a n + 1 X n + 1

array M , where for i < j the entry holds the value of j * log2 { j). Although this

array does not allow I(V) to be calculated with a single array lookup, in still saves time in

practice by avoiding repeatedly computing costly logarithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

2.7 .2 H euristic Input Ordering Speed u p

Recall that when descending the search tree, the condition for eliminating a node

and its descendants is dependent on the value of E for the path to the node and on the value

of E for the optimal set of window positions maximized independently over the remaining

sequences. Thus more nodes can be eliminated early if the sequences with the lowest max­

imal value of E come last in the input. To give a concrete example consider the case where

there are 11 input sequences and one is trying to eliminate nodes at the fourth level of the

tree. If the maximal value of E for the last 7 sequences of the input is low then the right

side of inequality 2.1 will provide a lower upper bound on the value of E for descendents of

the node in question.

We exploit this observation by ordering the sequences based on the results of running the

heuristic beam search on the initial, arbitrary ordering of the input. The input sequences

are sorted in descending order according to the value of X ^ o 1 log2 {F(i, B{i,j))/pB(i,j))t
where F(z, B (i,j)) denotes the frequency in column z, in the window position vector chosen

by the heuristic, of the character in the zth column of the window in the j th sequence. And

PB(i,j) denotes the prior probability of th a t character. The logic behind this is tha t if you

believe th a t there is one strong signal in the data and that the heuristic can find tha t signal,

then the sequences where that signal is weakest should have a low optimal value of E and

thus should come last.

2.8 D a ta Sets

2.8.1 L exA D ata Set

For this study we used a set of 11 E.coli DNA sequences of length 200, each of

which is known to contain a t least one binding site for the protein LexA. We copied this

data set directly from Hertz et al [6]. LexA binds in or near promoters and may bind to

sites which occur on either the sense strand or the anti-sense strand of the DNA. Thus we

needed to consider possible occurrences of the pattern on both the sequence and the reverse

complement of the sequence. Instead of designing our program to consider the reverse

complement of each input sequence, we simply concatenated the reverse complement of

each input sequence onto itself to create 11 sequences of length 400 each. This added w — 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

bogus window positions in the middle of each input string, but as these window positions

never appeared in a solution the solutions obtained were valid. As in Hertz et al we used

prior probabilities of 0.25 for each of the four DNA bases.

2.8.2 A rtificial D ata

Intuitively one would expect stronger motifs to be easier to find. In order to in­

vestigate the relationship between motif strength and the running time of our algorithm

we generated sets of artificial sequences with artificial motifs of varying strength planted

in them. We somewhat arbitrarily chose to generate sets of nine sequences of length 320,

planted with motifs of length 20.

The sequence generator receives four parameters: the length of the sequences to be gen­

erated /, the number of sequences to be generated n, the length of the motif w, and the

minimum information content c of each column of the motif. The generator can be de­

scribed with the following pseudo-code:

Generate n DNA sequences of length / using a uniform distribution over the four possi­

ble bases.

For i = 1 to w

Do

Generate a motif column i of length n using a

uniform distribution over the four possible bases.

Loop while the information content of motif * < = c.

EndFor

Generate a set of n random motif starting positions using the uniform distribution over

all possible starting positions.

Replace the characters in the sequences whose positions correspond to motif columns with

the characters from the motif columns generated above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

2.9 R esu lts

2.9.1 L exA D ataset

We ran the branch and bound program on the LexA data set with three different

window lengths. The patterns found by the branch and bound program with a window

length of 24 are shown in table 2.2. The running time was quite slow, requiring 71 hours on

a Hewlett Packard 9000/715 workstation. The program ran faster with window sizes of 20

and 22, requiring 20 and 28 hours respectively. We must mention th a t the sequence input

ordering heuristic was used for the window size of 24. Without reordering the sequences the

program took so long to execute tha t it had to be terminated prematurely, however judging

from the pace of its progress we estimate the reordering to have sped the calculation up

by at least a factor of 10. The reordering heuristic was not necessary for window sizes of

20 and 22. Tables 2.3, 2.4, and 2.5 show how many nodes survived a t each level of the

search tree with the different window sizes. For window sizes of 20 and 22 the number of

nodes peaks a t level 4 where we began pruning. For the length 24 window, at level 5 or

greater, many more nodes survive than for either the 20 or the 22 length window; which

we would expect from the difference in run times. The relatively high effectiveness of the

bound for level 4 with the length 24 window was evidently due to the use of the reordering

heuristic, since that heuristic is designed to facilitate pruning effectively towards the top of

the tree. Even with the least favorable window size of 24, the bound does well in terms of

the percent of nodes eliminated. Remembering that the fan out for this particular search

tree is 400 — 24 + 1 = 377 for each level of the tree we can see tha t the bound eliminates all

but 6 x 10-4 percent of the nodes a t level 4 and all but 7 x 10-5 percent of the nodes at level

5 of the search tree. It is not clear exactly why significantly fewer nodes are pruned overall

for the length 24 window size. The information content per column for the length 24, 22,

and 20 windows is 1.22, 1.29, and 1.36 respectively. The only clear conclusion we can draw

is tha t the relationship between information content per column and running time is not

linear. This result was also confirmed in our experiments with artificial data described in

the next section.

We did not run extensive empirical tests of the performance of our beam search heuristic

with the heuristic of Stormo and Hartzell [12]. However the results from very limited data

suggest that our heuristic performs somewhat better. Table 2.6 shows how their results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Sequence Pattern Found

umu-operon CTACTGTATATAAAAACAGTATAA
cloacin-df13 ATACTGTGTATATATACAGTATTT
recn TTACTGTATATAAAACCAGTTTAT
uvrb ATACTGGATAAAAAAACAGTTCAT (complementary strand)
reca ATACTGTATGAGCATACAGTATAA
sula TTACTGTATGGATGTACAGTACAT (complementary strand)
colicin-ib TATATGGATACATATACAGTACTA (complementary strand)
colicin-ia CATATGGATACATATACAGTATTA (complament axy strand)
colicin-el ATGCTGTATATAAAACCAGTGGTT
uvrd AATCTGTATATATACCCAGCTTTT
uvra ATACTGTATATTCATTCAGGTCAA

Table 2.2: The name of each sequence and the 24 base window found by the branch and
bound algorithm are given. When applicable the occurrence of the window on the comple­
mentary strand is indicated.

Level of Tree Number of Nodes
that Survive

4 131232
5 499498
6 3489962
7 597786
8 133618
9 200389

10 27146

Table 2.3: Results for the branch and bound program on the LexA dataset with a window
width of 24. The number of nodes surviving at each level of the search tree for which
pruning is done is shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

Level of Tree Number of Nodes
that Survive

4 1751830
5 272865
6 44539
7 18625
8 22903
9 11818

10 10420

Table 2.4: Results for the branch and bound program on the LexA dataset with a window
width of 22. The number of nodes surviving a t each level of the search tree for which
pruning is done is shown.

Level of Tree Number of Nodes
that Survive

4 100652
5 32120
6 7372
7 6468
8 7491
9 7789

10 5508

Table 2.5: Results for the branch and bound program on the LexA dataset with a window
width of 24. The number of nodes surviving a t each level of the search tree for which
pruning is done is shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

Search Type Window Size E(V) of Solution Found Times found / # of trials
Beam Best 27.241 5/5
Stormo Best 20 27.241 1/5
Beam Best 28.426 5/5
Stormo Best 22 28.426 2/5
Beam Best 29.279 2/5
Beam Other 29.181 3/5
Stormo Best 24 28.926 2/5

Table 2.6: Beam Best labels the best solution found by our beam search heuristic while
Beam Other labels a worse solution which was also found. A trial consists of randomly
rearranging the order of the sequences and running the programs. The numbers for Stormo
and Hartzell’s heuristic were taken from their paper, while we randomly generated our own
five orderings for our numbers.

compare with the beam search heuristic. We chose to keep the number of candidate paths,

i.e. the beam width, equal to the length of the sequence, a parameter setting which should

keep the amount of memory and time resources used by the two heuristics roughly equal

(recall tha t Stormo and Hartzell’s algorithm performs one greedy search for each window in

the first sequence). Note tha t th a t although the difference is small our beam search always

finds an equal or better solution. If one increases the number of candidates kept to 1700

from 400, then our beam search heuristic finds the optimal solution for a window size of 24

for all five orderings. The running time with the 1700 setting is ju st under 20 minutes.

2 .9 .2 A rtificial D ataset

The running times with different window sizes on the LexA data set provides

anecdotal evidence that a higher information content per position correlates with shorter

running times. The results of a more systematic investigation of this correlation are shown

in figure 2.1. Again the input ordering heuristic was necessary for the harder input sets,

in this case the ones with motif strengths of 21.4 and 21.8 bits. It can be seen that the

computation becomes infeasible as the information content drops below 21.4 bits for a motif

length of 20.

To get a feel for the significance of this motif strength we tried to determine what in­

formation content could be expected when no motif was present. When run on sets of nine

random sequences of length 320 (without any planted motifs), our beam search heuristic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Hours Running Time vs. M otif Strength

120.00

100.00

80.00

60.00

40.00

20.00

Information Content
22.00 26.00 30.0024.00 28.00

Figure 2.1: The y-axis gives the running time in hours of the branch and bound algorithm,
while the x-axis gives the total information content of the optimal set of window positions.
The data shown is from the artificial data set.

consistently found length 20 windows with an information content of approximately 18.8

bits. Thus for data sets of the size tested here, the possibility remains of subtle motifs

appearing with strengths in the range of 18.8 to 21.4 bits over 20 columns which cannot be

found with the current implementation of our branch and bound algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

2.10 D iscussion

2.10.1 A ppropriateness o f the Scoring Function

The work here only uses first order statistics to score alignments. It is easy to

see that it will generally be difficult to accurately estimate second or higher order statistics

from sample sizes of around 10 sequences. However it is not obvious what function of the

first order statistics should be used to score an alignment. Ideally we would like to have an

argument which shows from first principles th a t the scoring function used in this work is

clearly the correct choice. Indeed some theoretical work has been done along those lines, in

particular Berg & Hippel [4] derive a relationship which relates the information content to

the number of protein molecules which would be expected to be bound to spurious random

sites at equilibrium. However we will settle for a much more modest goal, namely to use

three simple examples to show that the scoring function used here does behave as one

would expect and th a t two other plausible scoring functions fail to behave as one would

expect. To simplify the discussion we again assume that the prior probability of each base

is j . Thus our scoring function is equivalent to the negative entropy of the observed base

frequencies summed over each column of the alignment. The examples we will use are shown

in figure 2.2. For our arguments we will assume that observing more sequences would not

significantly change the observed frequencies. Of course this is probably not true for such

a small sample size of four sequences but we chose a small number to keep the examples

manageable. If this seems unjustified the reader may consider a similar set of examples in

which each sequence is replaced by a large number of identical sequences. We argue that a

good scoring function should score the three alignments from figure 2.2 as a = 0 > I\ Why

should a score the same as 0? In words a represents the statement tha t the protein molecule

that binds to its site will bind anywhere it finds an “a” , while the protein that recognized

/3’s site will bind anywhere it finds an “a” or a “c” followed by a “g” or a “t” . In both

cases we would expect the protein to wastefully bind to j of the positions in a random DNA

sequence. Since it is the wasteful, and indeed potentially harmful, binding of the recognizing

protein to spurious sites that nature wants to avoid, we believe tha t a and 0 should receive

the same score. It is less obvious how one should put T in words, perhaps something like

the protein preferably binds to an “a” in the first position but sometimes accepts a “c” or

a “t ” and preferably binds to “g” in the second position but sometime accepts an “a” or

“t ” . In any case it seems obvious that the pattern describing 0 is strictly more specific that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

the pattern describing T and therefore it should score higher. It can be verified th a t the

entropy scoring function does indeed score a = 0 > T, however some possible alternative

scoring functions do not give the same relationship. One plausible scoring scheme would

be the product of the ratio of the expected to the observed frequency of the most common

base in each column. For four sequences the expected frequency of each base is 1 so the

score for a would be (y)(f) = 4, likewise the score for 0 would be (f) (f) = 4. Thus this

scoring function does indeed score a = 0. Unfortunately, since the scoring function only

depends on the frequency of the most common base, T would also have a score of 4. One

could imagine using a function of the ratio of observed to the expected frequency for each

base instead of just the most common base to cause T to score lower than 0, but it is hard

to see how that can be done without losing the equality between the scores for a and 0.

Intuitively a good pattern is as much different from random chance as possible, so one might

propose simply using the probability that a given set of observed base frequencies would

be generated by random chance. The probability that random chance would generate an

alignment giving the frequencies of a is

since there are 4! different columns of length 4 tha t contain one occurence of each base.

Likewise the probability of random chance generating an alignment giving the frequencies

of 0 is

So this scoring function gives a a better score than 0. We hope that these simple examples

will convince the reader that the entropy based scoring function is at least reasonable, and

superior to some other plausible alternatives.

2.10.2 Sum m ary and Future D irections

Our main result was th a t we were able to solve a non-contrived data set of reason­

able size to global optimality. The data set we used was previously used to demonstrate the

heuristic of Stormo [6]. Also the size of the problem (O(400u)) solved here is comparable in

size to the problem sizes used to test two other heuristic algorithms for maximizing functions

very similar to E{V). Specifically the data sets used to test an expectation maximization

algorithm by Lawrence and Reilly [10] and an algorithm using Gibbs Sampling by Lawrence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

a 0 r

aa ag ag

ac at at

ag eg eg
at ct ta

' i r ' h O '

' l l '

2 4

0 \ i 0 7 0

0 k 0 k o 1

1

O
• 0 1

l l
4 4

Figure 2.2: The columns of three hypothetical alignments and their observed base frequen­
cies are shown.

et al [9] were not much bigger than O(400u). We must note here that in practice these

heuristics produce good solutions and are more flexible in terms of modifying the objective

function, not to mention that they run much faster than our branch and bound algorithm.

Our point is tha t it is somewhat surprising that a problem as large as the one presented

here could be solved to optimality.

Branch and Bound algorithms have been effective in optimally constructing global mul­

tiple alignments, where global refers to aligning the whole strings rather than local patterns

in the strings, but for somewhat smaller problem sizes. For example, in regards to his branch

and bound algorithm for the maximum weight trace formulation of multiple alignment Ke-

cecioglu [8] states “. . . we can solve instances on as many as 6 sequences of length 250 in a

few minutes. These are among the largest instances that have been solved to optimality to

date for any formulation of multiple sequence alignment.”

To increase the utility of the branch and bound algorithm three improvements need to

be made. One needed improvement would be to speed up the algorithm so tha t data sets

with 20 or more long (length > = 300) sequences could be handled instead of the current

limit of about 10. To address this we have considered searching a search tree in which the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

nodes represent the displacement of windows relative to each other rather than the absolute

positions of windows, as well as implementing the algorithm on a parallel machine. Unfor­

tunately we have not significantly developed these ideas a t this time.

The second improvement would be to include “regularizers” to adjust for small sample

effects in the evaluation function. In general regularizers adjust the observed frequencies

before using them to estimate probabilities. Many regularizers can be implemented by

adding “pseudocounts” to the number of occurences of each character in an alignment

column. For example the well known Laplacian regularizer adds one occurence of each

character to the observed counts. Of course the probability estimates taken from the mod­

ified frequencies are normalized to add to one. A Laplacian regularizer can be used with

the current implementation of our program by simply adding dummy sequences of length

w, one for each character in the alphabet consisting entirely of that character as shown in

figure 2.3. Since there is only one possible window position for the dummy sequences, their

addition does not increase the search space. However Karplus [7] has shown that, at least

for protein sequences, the Laplacian regularizer performs poorly. He finds Dirichlet mixture

models to be the best choice. Mixture models allow one to express prior knowledge of the

form “A” and “T” tend to occur together, therefore when one observes an “A” one might

want to add a small amount to the count for “T” but not for “C” and “G” . Indeed, as can

be observed anecdotally in table 2.2, “A” and “T” do tend to occur together in columns.

This is explained by the fact that for a DNA site to bind to a protein some disruption of

the local DNA structure may be necessary; “A” and “T ” bind by only two hydrogen bonds

instead of the three bonds formed by “C” and “G” and therefore “AT rich” regions of DNA

may be easier to deform. Unfortunately mixture models cannot be implemented by simply

adding the same pseudocounts to each alignment. A compromise would be to use fractional

pseudocounts, which Karplus found to be much better than a straight Laplacian regularizer.

That would require some modification to our program but not to the basic algorithm.

The third improvement would be to incorporate the so called “ZOOPS” model proposed

by Bailey and Elkan [3]. This model allows for the possibility tha t some sequences do not

contain the motif. It is an attractive model computationally because it adds only one bit per

sequence to the search space. Moreover the model can be used iteratively to locate motifs

that occur a different number of times on different sequences, without any prior knowledge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

AAAA
CCCC
GGGG
TTTT
CTACTGTATATAAAAACAGTATAA
ATACTGTGTATATATACAGTATTT
TTACTGTATATAAAACCAGTTTAT

Figure 2.3: The use of dummy sequences to implement a Laplacian regularizer is shown. In
this example the window length would be four.

of the number of times the motifs occur.

In conclusion, we have developed a branch and bound algorithm for a widely used for­

mulation of multiple sequence alignment. This algorithm has allowed problems to be solved

to optimality tha t were previously amenable only to heuristic algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Bibliography

[1] D. J. Bacon and W. F. Anderson. Multiple sequence alignment. Journal o f Molecular

Biology, 191:153-161, 1986.

[2] Timothy L. Bailey. Likelihood vs. information in aligning biopolymer sequences. Tech­

nical Report CS93-318, UCSD, February 1993.

[3] Timothy L. Bailey and Charles Elkan. The value of prior knowledge in discovering

motifs with meme. In Proceeding o f the Third International Conference on Intelligent

Systems for Molecular Biology, pages 21-38. AAAI Press, 1995.

[4] Otto G. Berg and Peter H. von Hippel. Statistical-mechanical theory and application

to operators and promoters. Journal o f Molecular Biology, 193:723-750, 1987.

[5] Robert G. Gallager. Information Theory and Reliable Communication. John Wiley &

Sons, 1968.

[6] G. Z. Hertz, G. W. Hartzell, and G. D. Stormo. Identification of consensus patterns in

unaligned dna sequences known to be functionally related. CABIOS, 6(2):81-92,1990.

[7] Kevin Karplus. Evaluating regularizers for estimating distributions of amino acids. In

Proceeding of the Third International Conference on Intelligent Systems for Molecular

Biology, pages 188-196, Menlo Park, 1995. AAAI Press.

[8] John kececioglu. The maximum weight trace problem in multiple sequence alignment.

In Proceeding of Combinatorial Pattern Matching, pages 106-119, 1993.

[9] C. E. Lawrence, S. F. Altschul, M. B. Boguski, J. S. Liu, A. F. Neuwald, and J. C.

Wootton. Detecting subtle sequence signals: A gibbs sampling strategy for multiple

alignment. Science, 262:208-214,1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

[10] Charles E. Lawrence and Andrew A. Reilly. An expectation maximization (em) algo­

rithm for the identification and characterization of common sites in unaligned biopoly­

mer sequences. PROTEINS, 7:41-51, 1990.

[11] T. Schneider, G. Stormo, L. Gold, and A. Ehrenfeucht. Information content of binding

sites on nucleotide sequences. Journal o f Molecular Biology, 188:415-431, 1986.

[12] Gary Stormo and George W. Hartzell III. Identifying protein-binding sites from un­

aligned dna fragments. Nucleic Acids Research, 86:1183-1187,1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

C hapter 3

C alculating Edit D istan ce w ith th e

four R ussian’s Technique

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

Abstract

In this paper we describe a technique which reduces the table size needed for
using the Four Russians paradigm to compute the edit distance of two strings
when the edit costs are symmetric, e.g. when the cost of indels and mismatches is
1 and the cost of a match is 0. When the length of the strings, n, is sufficiently
long the savings is nearly a factor of crl, where a is the size of the alphabet.
In the case of an infinite size alphabet the technique lowers the running time
from 0 (n 2) to 0 {n 2/Y ~ l (n + 1)). In addition we note that in general it is
more efficient to cache subproblems as they are needed rather than precompute
all possible subproblems, some of which may turn out to be unnecessary. We
present empirical results which demonstrate the merit of these two ideas.

3.1 Introduction

The four Russians paradigm, first introduced by [1] amounts to storing the answers

to small subproblems in a table, and then using table lookups to solve a larger problem.

The first work which applied this paradigm to the problem of computing string edit distance

was that of [4] which succeeded in reducing the running time of edit distance computation

from 0 (n 2) to 0 (n 2/ log2 n) with a unit-cost RAM model or 0 (n 2/ logn) with a traditional

machine model. In practice however, the large size of the tables needed to store subproblems

limits the usefulness of their technique. In this work we exploit the equivalency of groups

of subproblems to reduce the storage requirements by nearly al, where a is the size of the

alphabet.

3.2 Four R ussians for Edit D istan ce

In this section we briefly review the technique introduced in [4] for using the Four

Russians technique to efficiently compute edit distance. The reader is referred to [3] for

proofs and a more complete exposition. We define a submatrix to be a t x t submatrix of

the standard edit distance dynamic programming table. Note that the lower and right edges

of the submatrix are a function of four things: the upper and left edges of the submatrix

and the substrings corresponding to those edges, as illustrated in figure 3.1. We will use a

lookup table to compute the lower and right edges from the those four inputs. It is clear

tha t if we can implement such a table then we can calculate the edit distance by looking up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Figure 3.1: A submatrix of a standard dynamic programming table is shown. Note that
the area and substrings shaded in light gray are sufficient to calculate the area shaded in
darker gray

b d c B l ■ ■ ^ c(1, *) (1. *) (1, *) t 1, *) (1, •) t 1, *) (1, *) (1, *)
c (* ,1) (0, 0) (1. 0) (0 ,-1) (1 ,-1) (1 ,-1) (1 ,-1) (1 ,-1) (1 ,-1)
b (* ,1) (-1 , 0) (1, 0) { 1 , 1) (0, 0) (1, 0) (1, 0) (1, 0) (1, 0)
d (* ,D (-1 , i) (-1 ,-1) r n . - ^ i r e . i r f i r t H i . T i T i t i , oj < i , oi

I c , i) (- i , i) (- i . D i e o . M f T T n ^ T T ^ n i t i . B) I < l . - D t i , - i)
[(* , 1) (-1, 1) (- 1 , 1) ■ (0 , * > | (o, 1 1 (0 , 0)J (1 , H) , (1 , 0) (1 , 0)
|(*,1) (-1, 1) (-1, 1)1 (-!,■) ^ |T T ^ n)|p ^ (M J I) l (1,-1) (1,-1)
(* , 1) (-1, 1) (- 1, 1) T ^ T ^ r T T r ^ t f T (o, oj (l , oic

b (* ,1) (-1 , 1) (-1 , 1) (-1 , 1) (0, 1) (0, 0) { 0, 1) (0, 1) (0 (0)

Figure 3.2: A submatrix of a dynamic programming table using relative offsets instead of
absolute edit distances is shown. The first number of each ordered pair is the difference
between the edit distance of its cell and the cell directly to its left. The second number of
each ordered pair is the difference between the cell and the cell directly above it. Note that
the entries and substrings shaded in light gray are sufficient to calculate the entries shaded
in darker gray.

overlapping submatrices. The potential win comes because we only need to calculate the

dynamic programming entries which correspond to the insides of the submatrices once for

each possible set of inputs.

Assuming unweighted edit distance, we state without proof th a t adjacent cells

in the standard dynamic programming table cannot differ by more than one. Thus the

submatrix edge entries may be defined as offsets relative to their left or upper neighbors,

with the actual value of the upper left hand corner entry being irrelevant to the task of

computing the offsets. A typical submatrix of offset values is shown in figure 3.2. Since the

offset entries must be in {—1,0,1} the total number of possible offset inputs is 32̂ -1^ The

submatrices are of size t x t but the upper and lower edges are provided as input so only

the two corresponding substrings of length t — 1 are needed. Thus the overall number of

possible inputs becomes (3cr)2(<_1). If t is set to be log3tr n then the precomputation time

becomes 0{n log2 n), which is less than the 0 (n 2/ log2 n) time needed to use the submatrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

(1, *
c (* 1) { o. 0
b (* 1) (-1 . 0
d (* 1) (-1 . 1

B N —ar (* 1) (-1 . 1
■ « - * <* 1) (-1 , 1
m < r-e (* 1) (-1 , 1

c (* 1) (-1 . 1
b (* 1) (-1 . 1

1 . 0)

0 , 0)
0. X)b r , u (- 1, i) (-1, i) (- 1, i) (o, i) (o. oj (o, i) (

Figure 3.3: A submatrix of a dynamic programming table using the canonical form of
substrings for input is shown. As in the previous figure the first number of each ordered
pair is the difference between the edit distance of its cell and the cell directly to its left. The
second number of each ordered pair is the difference between the cell and the cell directly
above it. Again the entries and substrings shaded in light gray are sufficient to calculate
the entries shaded in darker gray.

lookup table to do the actual edit distance calculation. The space needed for the lookup

table becomes O (nlogn).

3.3 Saving Space w ith C anonical Strings

3.3 .1 C anonical Strings

The technique for saving space is a simple one. Given that the edit costs are

symmetric we observe that the edit distance between two strings is unchanged when all the

occurrences of any two characters are switched, this is because the edit distance depends

only on where the matches and mismatches occur. We exploit this fact to reduce the number

of substring pairs that must be stored for the four Russians algorithm. Let string S be the

string formed by concatenating the 2 substrings that are part of an entry in the table used

by the four Russians. We map 5 onto its canonical string T by associating the first character

occuring in 5 with the first character of the alphabet and the second distinct character in

S with the second character of the alphabet etc. Thus with the English alphabet both

S = zyyzx and S = qccqg would be mapped to T = abbac. Normally the concatenation of

two substrings is used for the table lookup, however we observe that when computing edit

distance, instead of directly using the concatenation of the substrings of each submatrix

for the table lookup it is possible to use the canonical forms of tha t concatenation instead.

The same example submatrix shown before is shown again in figure 3.3 with S = aacabc

mapped to T = aabadb.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

3.3.2 Savings

The motivation for defining a set of canonical strings is that there are fewer canon­

ical strings of a given length than number of possible strings of the same length. For an

alphabet of size a the number of possible strings of length t is cr1, however counting the

number of canonical strings is less straightforward. For the small alphabet sizes it is pos­

sible to calculate the number of canonical strings as a function of their length t by ad hoc

reasoning. For example with an alphabet of a, b the first character of the canonical string

must be “a” and the succeeding characters can be either “a” or “b” , so the number of

strings is 2*_1. W ith an alphabet of a,b,c we observe tha t only a’s can appear before the

first “b” and any character can appear after the first “b” . Thus the number of strings with

the first “b” in position i is 3t - ‘ and therefore the total number of strings with one or more

b’s in them is:
* i —2 o t - l -I

i= 2 t= 0

Since the first “b” can appear in any position from 2 to t. Adding one for the string of all

a’s gives
o t - l . 1

where we define N (t , a) to be the number of canonical strings of length t for an alphabet

size of <7. Table 3.1 shows the solutions for alphabet sizes of 2, 3, and 4, but as one can see

this sort of ad hoc reasoning becomes difficult for larger values of a. To obtain a general

formula for calculating N (t,a) we define S(t,cr) to be the number of canonical strings of

length t in which exactly a distinct characters appear. Clearly,

A (t,a) =]T S (M) .
i=i

It is not hard to see th a t the following recurrence must hold:

S (t,a) = a S (t— 1,<7) + S(f — 1, <7 — 1).

The first term on the right hand side represents extending a length t - 1 canonical substring

in which all a characters have already appeared, this can be done by adding any of the

<7 characters. The second term represents extending a length t — 1 canonical substring in

which only the first cr — 1 characters have appeared, this can only by done by adding the

<7th character. This recurrence is convenient to use with dynamic programming, which we

have used to calculate N (t, a) for specific values of a and t as shown in table 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

N um ber of canonical strings for sm all alphabets
a N(<r,t)
2 2t- i

3 3‘-*+l
2

4 4 i^± 2 + 2 t-2

Table 3.1: Formulas for the number of canonical strings of length t are shown for alphabet
sizes of 2, 3, and 4.

Although the recurrence above is sufficient to calculate values of interest a more

direct summation formula may be obtained. In preparation we first state the following

Lemma:

L em m a 1 The number o f possible strings of length t > a using all o f a characters at least

once is <r! • S(£, a), where S (t, <r) is the Stirling number o f the second kind defined by:

(<ri) ■ S (t , <r)= o ' - (')(<r - 1)‘ + © (<r - 2)- -

Proof: The basis of this lemma is an application of the inclusion-exclusion principle. A proof

can be found in textbooks which include an introduction to combinatorics, for example see

[2]. For completeness the proof of this lemma is also given in appendix 1.

T h eo rem 1 The number o f canonical strings o f length t using exactly r characters is

S (t,r) .

Proof: Consider an equivalency class of strings defined by the operation of renaming char­

acters. There are r! orderings of the r names of the characters which appear, so each

equivalency class has r! members. Note that a string is a canonical string if and only if

the order in which its characters first appear is the canonical order. Thus each equivalency

class contains exactly one canonical string. Finally note tha t each string belongs to exactly

one equivalency class. These facts combined with Lemma 1 complete the proof.

3.3.3 C om plexity w ith Large A lphabet Sizes

The standard four Russians algorithm depends on a small alphabet size, for large

alphabet sizes, e.g. a = 6{n) the algorithm is completely ineffective. This is obvious by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Size of Savings o r different alphabet sizes and substring lengths
<7 t N (a ,t) a*/ N (a , t) erl
3 4 14 5.79 6
3 6 122 5.98 6
4 4 15 17.07 24
4 6 187 21.90 24
4 8 2795 23.45 24
4 10 43947 23.86 24

20 4 15 1.1 x 104 2.4 x 1018
20 6 203 3.2 x 105 2.4 x 1018
20 8 4140 6.2 x 106 2.4 x 1018
20 10 115975 8.8 x 107 2.4 x 1018

Table 3.2: The number of canonical strings for different length strings and alphabet sizes
a are shown with the ratio of the number of possible strings without canonicalizing to the
number of canonical strings. For ease of comparison the upper bound on tha t ratio, cr!, is
also shown.

observing tha t the number of substrings of length two would already be 0 (n 2). However

the use of canonical strings reduces the table size so effectively with large alphabets that the

asymptotic time complexity of computing edit distance for two strings of length n becomes

0 (n 2/ r - 1 (ra+l)). Where T-1 denotes the inverse of the T function, T(n+1) = n!. Note that

asymptotically r -1 (n + 1) grows slightly faster than |0̂ ^ wl (proved in Appendix 2). To

prove this running time we note that the number of canonical strings of length t is bounded

by t\. This is because the first character must be ’a ’, the second character must be in {’a ’,

’b’}, the third character must be in {’a’, ’b’, ’c’} , __ Using t x t submatrices the input

strings are the concatenation of two length t substrings. Thus by setting t = r -1(ra + l)/2

we limit the number of possible input strings to no more than n. Each input string has

3 2 (4- 1) 0ffset matrices, each of which can be computed in 0 [t2) time. Thus the overall

precomputation time is 0 ((n)t232*) time. As proven in appendix 3 this is o(n2/t) . With

the precomputation finished the edit distance can be computed with j xj? table lookups. If

constant time array access or hashing is allowed in the complexity calculation the canonical

string can be computed in 0 (t) time. This is certainly reasonable for alphabet sizes that are

not infinite but still much too large for the standard four Russians algorithm. For example

when a = 0(n) an algorithm such as tha t shown in table 3.3 can be used to calculate the

canonical string in 0 (t) time. Thus the overall running time becouse 0 (n 2/t) . Again using

the fact th a t t = this running time is o(^2 |° |‘°sn).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

In some cases, even if the alphabet size is u(n) the canonicalizing algorithm may

be used. The number of distinct characters appearing in the strings is 0 (n) , so if individual

characters can be compared in constant time it is possible to sort the set of characters which

appear in the strings in O(nlogn) time. This sorted list can then be used in place of the

Alphabet array in table 3.3 for computing canonical substrings.

3.4 Em pirical Study o f Perform ance

3.4.1 On D em an d Subm atrix C alcu lation

For the asymptotic analysis we precomputed the values for all possible submatrices

before looking a t the actual input strings. This of course leads to the possibility of wastefully

precomputing submatrices that aren’t ever needed. In fact we would expect this to be

common as some offset vectors, for example the one consisting entirely of -+-1, seem unlikely.

An alternative approach is to calculate the submatrices the first time they are seen and

enter them in the lookup table at that time. We employed this on demand approach for our

empirical simulations. One additional benefit of using on demand calculation of submatrices

is that even if t is foolishly chosen to be > log n the time and space required for the lookup

table is still 0 (n 2t) instead of becoming exponential in n.

3.5 Sim ulation

We implemented the four Russians algorithm for computing edit distance with the

option of using canonical strings in Perl. The program does compute the edit distance but

its main function is to count the number of submatrices which need to be computed, (to

emphasize the counting aspect of the program we will sometimes refer to it as the simulator.)

To simplify the implementation the program truncates the input sequences as necessary to

make their length be a multiple of t — 1, for example with t = 4 an input string of length

800 would be truncated to length 798.

3.6 D atasets

We used three data sets: an artificial d a ta set, a set of 5S RNA sequences, and a set

of DNA sequences containing LexA binding sites. The artificial sequences were randomly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

/ / s i s the input string.

/ / i is the canonical string to be computed.

/ / Alphabet is a static array of characters representing

/ / the alphabet.

/ / Mapping is an array of pointers which point to

/ / elements of Alphabet

/ / current-character indexes Alphabet

/ / Note that the alphabet is numbered from 1.

/ / For example Mapping[’a ’] = Mapping[1]

//
Alphabet 4 - [’a’, ’b’, • • •, V]

current-character 4— 1 / / points to ’a’

Initialize all elements of Mapping to nil.

For i = 1 to length of s

if(Mapping[s[i]] = = nil)

Mapping[s[i]] = Alphabet[current-character]

increment current-character

£[i] = Mapping [s[i]]

Table 3.3: Pseudocode for efficiently computing canonical strings is shown. The English
alphabet is used for illustration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

generated using a uniform probability of each base at each position. The 5S RNA dataset

consisted of 9 sequences of lengths 120 to 122 [5]. The LexA dataset consisted of 11 sequences

of length 200. The same LexA dataset was described in chapter 1, but here we did not

include the reverse complement of the sequences.

3.7 A ll Pairs Edit D istance

It is sometimes useful to compute the edit distance between all pairs of a set

of sequences. For example some popular programs for generating multiple alignments or

phylogenetic trees from nucleotide sequences compute the all pairs edit distance as a first

step. It is clear tha t by aligning the same string many times the same pair of substrings

is more likely to occur repeatedly We conducted experiments on the natural datasets to

quantify this effect.

3.8 A lgorithm s and r ’ost M odels

The four Russians algorithm is asymptotically faster than standard dynamic pro­

gramming but will perform poorly if the time needed to look up a value in a large table is

too long. Since the best tradeoff will depend on the architecture of the machine used, we

analyzed our simulation results using a parameterized cost model. In our simplified model

one unit of time is defined as the time needed to compute one cell of the standard string

comparison dynamic programming table. With that scale, we define A as the time required

for a table lookup and r as the time required per character for computing the canonical

version of a string. We used these parameters to analyze the performance of four algorithms

• Standard Dynamic Programming (SDP)

• Standard four Russians (S4R)

• Canonicalized four Russians with no canonical string cache (C4R)

• Canonicalized four Russians with canonical string cache (C4RC)

C4R and C4RC differ in that C4RC keeps an additional lookup table with length 2{t - 1)

substrings as keys and their canonical versions as values. To keep the model manageable we

also assume th a t the cost of looking up a value in this generally much smaller table is also A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Algori thm s and the ir Costs
Algorithm Cost
SDP n2
S4R t2m r + A r
C4R t2m c + 2(t — l) r r -f Ar
C4RC t2m c + 2(f — l)rm 4 4- 2Ar

Table 3.4: The parameterized running time of four string comparison algorithms under a
simplified cost model is shown. The cost model and algorithms are described in the text.

We define mr to be the number of entries that need to be calculated for the standard four

Russians lookup table (or equivalently the number of cache misses), m c to be the number of

entries that need to be calculated for the canonicalized four Russians lookup table, and ms

to be the number of entries that need to be calculated for the canonical string lookup table
2

used by C4RC. For convenience we denote the number of submatrices, , by r. Note

that by definition r > m r > mc and m c > m a. These definitions can be used to calculate

the running time of each algorithm as shown in table 3.4.

3.9 R esults

3.9.1 S im ulation D ata

The data collected with the simulator using the artificial sequences is shown in

table 3.5. The two natural datasets were used to quantify the effectiveness of the various

algorithms on the all pairs edit distance problem. The data collected with the simulation

for the 5S ribosomal RNA is shown in table 3.6. The data for the LexA dataset is shown

in table 3.7.

3.9.2 Tradeoffs

Artificial Sequences

The memory use of the canonicalized and standard four Russians is shown in fig­

ure 3.4. This da ta convincingly demonstrates tha t the theoretical space savings gained

from canonicalizing is realized in practice. The canonicalizing algorithm has smaller lookup

tables for all input sizes but approaches its asymptotic size faster than the standard al­

gorithm. The memory use directly reflects the number of cache misses for the submatrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

lequired Lookup Table Sizes
length t submatrices

without (Mr)
submatrices

with (Mc)
substrings

(Ms)
50 3 504 306 143

100 3 1664 641 256
200 3 4527 933 256
400 3 10089 1128 256
800 3 16296 1194 256

1600 3 19680 1208 256
3200 3 20601 1213 256
6400 3 20719 1214 256

15000 3 20731 1214 256
48 4 249 239 196
99 4 1023 936 621

198 4 3766 3042 1520
399 4 14072 9994 3024
798 4 49045 27029 4032

1600 4 156860 59667 4096
3200 4 457473 95428 4096
6399 4 1095502 119215 4096

15000 4 2082274 131912 4096
48 5 143 143 110

100 5 625 624 600
200 5 2475 2415 2162
400 5 9500 8984 6804
800 5 36967 32082 19170

1600 5 135895 108160 40602
3200 5 488264 372004 61750
6400 5 1726156 1167474 65280

15000 5 7890743 3896497 65536

Table 3.5: The results of aligning pairs of strings with equal lengths is shown. The number
of submatrices with and without canonicalizing and the number of pairs of substrings are
shown for different string lengths and values of t. The strings are randomly generated
strings over an alphabet of size four.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

5S RNA Required Lookup Table Sizes
effective

length
t submatrices

without (M r)
submatrices

with [Mc)
substrings

[Ms]
719 3 11818 1148 256
718 4 29436 15470 3682
717 5 23151 21033 11633

Table 3.6: The number of submatrices with and without canonicalizing and the number of
pairs of substrings are shown for different values of t. The effective length is the square root
of the sum of the product of the lengths of the strings in each pair.

LexA Dataset Requirec Lookup Tab e Sizes
effective t submatrices submatrices substrings

length without [Mr) with [Mc) m
1483 3 18594 1213 256
1468 4 123620 51643 4065
1483 5 111799 92085 34182

Table 3.7: The number of submatrices with and without canonicalizing and the number of
pairs of substrings are shown for different values of t. The effective length is the square root
of the sum of the product of the lengths of the strings in each pair.

lookup table and therefore the cache hit rate is also higher for the canonicalizing algorithm.

However, it does take time to obtain the canonical substrings either by calculation or by

looking them up in a canonical string cache. Thus for any given input the fastest algorithm

will depend on the value of the cost parameters A and r . We calculated that relationship for

each dataset used with the value of r fixed at one. Figures 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 show

the relationship between the time required and A for the articial sequences. Figure 3.11

compares the performance of different algorithms across different t values for the pair of

length 15000 sequences.

All Pairs

We investigated the performance of the algorithms for the all pairs alignment

problem with two datasets. The cost curves for the 5S RNA data are shown in figures 3.12

and 3.13. As can be seen in figure 3.14, the standard four Russians with substrings of

length 3 outperforms standard dynamic programming when A is less than about 3. The

cost curves for the LexA sequences are shown in figures 3.15 and 3.16. Figure 3.17 compares

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

the performance of algorithms for substrings of length 3 and 4.

3.9.3 Conclusions

The simulation results summarized in figures 3.11, 3.14, 3.17 show that for reason­

able problem sizes the standard four Russians algorithm can be faster than the standard

dynamic programming algorithm for A values as high as 7. For modern architectures it seems

reasonable that a table lookup with a key of 6 characters and six integers in {—1,0,1} (for

t = 4) could be done in the time required to compute 7 entries of the dynamic program­

ming table. For the length 15,000 strings the canonicalized four Russians with t = 5 also

performed better than standard dynamic programming for A < 4.5, but not as well as the

standard four Russians which did best with t = 4. Our choice of setting r to one was some­

what arbitrary but it appears tha t for small values of t the time spent computing canonical

strings is not justified by the increase lookup table hit rate. This makes some intuitive sense

since by computing the canonical string one is investing O(t) time in the hopes of saving

0 (t2) time by using the lookup table more effectively. However we should note here that

the cost calculations were slightly biased against the canonicalizing algorithms because the

same lookup time A was used to compare methods, even though the smaller lookup tables

used by the canonicalizing algorithms might yield faster lookup times.

Another issue that can be investigated with the simulation results is the expected

increased effectiveness of the four Russians approach when applied to the all pairs edit

distance problem. The data presented here suggest that that effect is not dramatic. For the

5S RNA sequences the number of submatrices (table 3.6) needed is slightly less than tha t

expected from simply extrapolating the results of table 3.5 onto a string length of « 718,

but still more than that needed for artificial sequences of length 400. For the LexA dataset,

with an effective length of 1483, the number of submatrices (table 3.7) required is also quite

close to what one would expect from extrapolating from table 3.5.

We can also see tha t the time gained from computing submatrices on demand over

precomputing all possible submatrices was not great. For t = 3 the number of canonicalized

matrices saturates at 1214 which is only one less than the theoretical limit of N (4 ,2 (t —

l))32(t_1) = 15 * 34 = 1215. Thus nearly all possible matrices are actually encountered in

practice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

x 1 o6 Memory Use Comparison, t = 4

2.5

COa>
w
C
©
CD

.C
1.5 Standard 4R

o
CDo

0.5

Canonicalized 4R

0 5000 10000 15000
sequence length

Figure 3.4: The memory use of the canonicalized and standard four Russians algorithm
are shown for pairs of artificial sequences of different lengths. An upper bound on the
asymptotic memory use of each is shown as a dotted line.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

t = 3, n = 400

2.5

C4R

SDP

E 1.5

S4R

C4RQ
0.5

0.50 1 1.5 2 2.5
lambda

Figure 3.5: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The aligned strings were of length
400 and t was set to t = 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

t = 3, n = 15000
6

5

4

Q)
E 3 C4R

SDP

2
S4R

C4RQ

1

0
1.50.5 1 2 3 3.5 4.50 2.5 4 5

lambda

Figure 3.6: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The aligned strings were of length
15000 and t was set to t = 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

t = 4, n = 798

C4R

S4R

CD

E

SDP

C4RC

0 0.5 1 1.5 2 2.5
lambda

Figure 3.7: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The aligned strings were of length
798 and t was set to t = 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

t = 4, n = 15000

C4RJ

C4R

E 3 S4R

SDP

0 1 2 3 4 5 6 7 8 109
lambda

Figure 3.8: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The aligned strings were of length
15000 and t was set to t = 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

t = 5, n = 3200
16

14
C4R

12

10

©
E

C4RC

S4R

SDP

0 0.5 1 1.5 2 2.5
lambda

Figure 3.9: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The aligned strings were of length
3200 and t was set to t = 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

t = 5, n = 15000

3.5

C4RE 2.5
SDP

C4Ri1.5

0 1 2 3 4 5 6 7 8 109
lambda

Figure 3.10: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The aligned strings were of length
15000 and t was set to t = 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Artifical Data, n = 15000

S4R

T4

E 3

SDP

S4I
C4I

S4R

10 2 3 4 65 7 8 9 10
lambda

Figure 3.11: The time required for various values of A is shown for different algorithms and
values of t. For example S4R_T4 denotes the standard four Russians algorithm with t = 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

5S RNA All Pairs, t = 3
14

C4R
S4R

CD
E C4RQ

SDP

0 0.5 1 1.5 2.52 3 3.5 4 4.5 5
lambda

Figure 3.12: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The edit distance of all pairs of the
5S RNA sequences was computed with t = 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

5S RNA All Pairs, t = 4

C4R

S4R

ffl
E

SDP

C4RC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
lambda

Figure 3.13: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The edit distance of all pairs of the
5S RNA sequences was computed with t = 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

5S RNA All Pairs

C4RC

a>
E

SDP

C4RC T-

0.50 1 1.5 2 2.5 3 3.5 4 4.5 5
lambda

Figure 3.14: The time required to comput the edit distance of all pairs of the 5S RNA
seqeunces for various values of A is shown for different algorithms and values of t. For
example S4R_T3 denotes the standard four Russians algorithm with t = 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

Lexa, All Pairs, t = 3

C4R
E 3

SDP

S4R
C4Ri

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
lambda

Figure 3.15: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The edit distance of all pairs of the
LexA sequences was computed with t = 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Lexa, All Pairs, t = 4

E 3
C4R

SDP

C4I S4R

0 1 2 3 4 5 6 7 8 9 10
lambda

Figure 3.16: The time required for various values of A is shown for dynamic programming,
the standard four Russians algorithm, and the canonicalized four Russians algorithm with
and without a separate cache for canonicalized strings. The edit distance of all pairs of the
LexA sequences was computed with t = 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Lexa, All Pairs

S4R

C4RC_T4

E 3

SDP

S4R_Ti

0 41 2 3 5 6 7 8 109
lambda

Figure 3.17: The time required to comput the edit distance of all pairs of the LexA seqeunces
for various values of A is shown for different algorithms and values of t. For example S4R-T4
denotes the standard four Russians algorithm with t = 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

3.10 Sum m ary

We have introduced a technique which uses a canonical representation of a pair of

substrings to reduce the number of subproblems which a four Russians algorithm needs to

precompute in order to compute the edit distance between two strings. For an alphabet of

size of a — O(logn) the technique saves a factor of up to er! space over the standard four

Russians algorithm. For an alphabet size of 0 (n) the technique makes it possible for a four

Russians algorithm which is asymptotically faster than the standard dynamic programming

algorithm, requiring 0 (n time.

We investigated the behavior of the canonicalizing and standard four Russians

algorithm by generating empircal data. The data confirms that the canonicalizing algorithm

does save space in practice. However for the problem sizes which our simulator could

handle the potential time saving are not realized due to the overhead required in repeatedly

computing or looking up canonical strings.

3.11 Acknowledgem ents

The author would like to thank Daniel S. Wilkerson and Saul Schleimer for pointing

out that there is a simple relationship between the number of canonical strings of a given

length and the Stirling number of the second kind.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 1

Bibliography

[1] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economic construc­

tion of the transitive closure of a directed graph. Dolk. Acad. Nauk SSSR, 194:487-488,

1970.

[2] V. K. Balakrishnan. Introductory Discrete Mathematics. Prentice Hall, 1996.

[3] Dan Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge Press, 1997.

[4] W. J . Masek and M. S. Paterson. A faster algorithm for computing string-edit distances.

J. Comput. Syst. Sci., 20:18-31, 1980.

[5] D. Sankoff, R. Cedergren, and G. Lapalme. Frequency of insertion-deletion, tranversion

and transition in the evolution of 5s ribosomal rna. Journal o f Molecular Evolution,

7:133-149, 1976.

3.12 A ppendix 1

In this appendix we prove:

Lem m a 1 The number o f possible strings o f length t > a using all o f a characters at least

once is a\ • S (t, a), where S (t,o) is the Stirling number of the second kind defined by:

(<r!) • S{t. „) = <r‘ - Q (<r - 1)' + Q („ - 2)‘ - • • • + (- I) - 1 f " \ l ‘ (3.1)

Proof: Following [2] we prove this using the inclusion-exclusion principle. Let Ai, i < a,

represent the set of strings of length t in which the ith character appears. The quantity we

are interested in is the cardinality of Ai fl A2 0 • • • fl Ac . Let U = Ai U A2 U • • • U A c denote

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 2

our universe of strings. By the inclusion-exciusion principle we know that

|AirM2n---/t„| = m - \ A ' t UA^U-- A'„\

= + E K- n A j n Ail h— + (- lJ 'M i n a , n • • • i
t i < j i < j < k

The number of possible strings excluding any k characters is (p — k)‘ for 1 < k < a. No

strings are possible when all a characters are excluded so the last term of equation 3.2 is

zero. Combining these two facts with equation 3.2 gives equation 3.1, completing the proof.

3.13 A ppendix 2

In this appendix we prove:

Theorem 2 I ^ n + 1) = w (j f e)

Proof: We prove that the inverse of nn is a>(|^|"-) . This is sufficient to prove the theorem

because n" grows faster than n!. Let a = n” . We show th a t n = u;(^"°o). This is done by

taking logs and recursively substituting:

. In a
I o 6 n a = T— = ra ­in n

Therefore
In a In a In a .n = -— = — ;— = u> {-— :—) ,
Inn ln l1̂ In In a

in n

completing the proof.

3.14 A ppendix 3

T h eo rem 3 0((n)£232t) = o(^-), where t\ = n.

Proof Cancelling terms we see tha t it is enough to show th a t

0(£332t) = o(n) = o(£!)

or equivalently,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Since t\ <

'w > -

For t > 81e2,
t l~3 ̂ (9e)2*-6
(9e)* > (9e)‘

Thus the limit goes to infinity.

t t- 3

= (9e)‘

= (9e)t_6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Chapter 4

Efficiency o f the A * A lgorithm for

M ultiple String A lignm ent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Abstract

Multiple sequence alignment is an important tool for analyzing biological macro­
molecules. A well known dynamic programming algorithm can align n sequences
of average length I in 0 (ln) time. Carrillo & Lipman introduced a bounding
technique that eliminates portions of the n dimensional dynamic programming
table from consideration and reported excellent speed-up from the use of those
bounds. Those same bounds can be used in a different manner with the A* al­
gorithm. Kececioglu implemented a branch and bound algorithm which is very
similar to the A* algorithm in the well known MSA multiple sequence alignment
program. Here we present an analysis which shows tha t the A* algorithm domi­
nates Carrillo & Lipman’s preprocessing algorithm in the sense tha t the portion
of the dynamic programming table which is eliminated by Carrillo & Lipman’s
algorithm is never expanded by an A* algorithm using the same bounds. We
also show that in general A* expands fewer nodes than Kececioglu’s branch and
bound algorithm.

4.1 Introduction

Multiple alignment of sequences representing nucleic acid and protein sequences

is useful in molecular biology [4]. An extension of the dynamic programming method for

aligning two sequences (Needleman and Wunsch [9]) introduced by M urata et al. [8] can

align n sequences of average length I in 0 (ln) time. However, dynamic programming has

the drawback that its best case execution time is no better than its worst case execution

time. Carrillo & Lipman [2] showed that by using a lower bound on the cost of aligning

two sequences in the multiple alignment a preprocessing step can eliminate much of the n

dimensional dynamic programming table from consideration. They reported a significant

speed up of the best and average case execution time for the alignment of three or more

sequences, up to a practical limit of around six sequences. Kececioglu [6], [5] used similar

bounds with a branch and bound algorithm in his implementation of the MSA multiple

sequence alignment program. In this paper we show that, while quite similar to Kececioglu’s

branch and bound algorithm, the well known A* algorithm has a provable advantage over

Kececioglu’s algorithm. Furthermore we show that the A* algorithm never expands a vertex

that would be eliminated by the preprocessing step of Carrillo & Lipman’s algorithm. Thus

suggesting that, at least for some cases, the A* algorithm provides a more efficient means

of utilizing the bounds than Carrillo & Lipman’s algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

4.2 A lgorithm s for M ultiple A lignm ent

In this section we describe what a multiple alignment is and introduce the notation

that is needed to describe different kinds of alignments of strings and substrings and their

costs. We then sta te the recursion that is the basis of the dynamic programming algorithm

for multiple alignment. After that we describe the heuristic speed-up of Carrillo & Lipman.

Finally we describe the application of the A* algorithm to this problem and point out how

A* is superior to the similar branch and bound algorithm of Kececioglu [6], [5]. In the

next section we present a proof that the A* algorithm dominates the heuristic of Carrillo

& Lipman.

4.2.1 D efin ition s and N otation

For simplicity, we will consider the case of aligning three sequences when presenting

notation and proofs. The generalization of the proofs presented to the case of n > 3

sequences will always be straightforward. A formal definition of the multiple alignment

problem is given by Carrillo & Lipman [2] so we will only briefly describe the problem.

Let a projection of a multiple alignment onto two of its component sequences simply be

the alignment of those two sequences within the multiple alignment. For illustration the

projection of the alignment:

-eugene
marci-o
b-r-ice

onto the sequences “eugene” and “marcio” is simply:

-eugene
marci-o

The cost of a projection is the sum of the costs of its columns, with a cost matrix giving

the cost of aligning any two characters in a column. The sum of pairs multiple alignment

problem defines the cost of a multiple alignment as the sum of the costs of the projections it

imposes. Note th a t the words “cost” , “weight” , and “distance” will be used synonymously

throughout this chapter.

We will now introduce the notation necessary for the rest of this paper. The reader

may want to skim this now and refer back to this section as necessary. Let / be a sequence

of characters indexed from z’i to z'/,.. Let the length q prefix of I be denoted (z'o, iq) and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

length U — q suffix, i.e. the suffix starting at the iq + 1 th character, be denoted (iq, zjt).

For aesthetic reasons the i , j , k are written in upper case when they occur alone. Also

note th a t we have purposefully defined the first coordinate of the substring to be one less

tha t the index of the first character in the string, for example the substring representing

just the first character of I is denoted (io, ii), this is done solely to avoid adding “+ 1” to

half of the subscripts below. Let a denote an alignment of two or more sequences. When

the alignment a has an optimal score over some projection of the sequences then a will be

superscripted with an * and subscripted with the sequences the alignment is being projected

onto, e.g. a"j[I ,J ,K] denotes an alignment of the sequences / , J, K in which the cost of

the projection onto the sequences I and J is minimal. When the alignment a is optimal

with respect to the total sum of pairs cost no subscript will be used. Analogously the cost

of an alignment or a projection of an alignment will be denoted c(a) where the cost of

a projection of an alignment is indicated by a subscript on the c. Again the subscript is

dropped when the total sum of pairs cost is to be designated. For example, c,j(a*y[/, J, K])

is the cost of the projection onto the sequences I and J of the alignment mentioned above,

while c(a*y[7, J, AT]) is the sum of pairs cost of the same alignment.

4.2 .2 M ultiple Sequence A lignm ent and D y n a m ic Program m ing

We can now use our notation to give the basic recurrence used for the dynamic

programming algorithm. First consider aligning two prefixes (z'o, ig) and {jo,jr)- In the

optimal alignment of these two prefixes there are three possible final columns; either char­

acters iq and j r align, or iq aligns against a space, or j r aligns against a space. These three

columns correspond to three possibilities: either the optimal alignment can be obtained by

extending the optimal alignment of (t’o» *9—1) and (jbijV-i), or by extending the optimal

alignment of (z'c^z',-!) and (jo ,jr), or by extending the optimal alignment of (z'o, iq) and

(jO iir-i)- Thus the recursion for two sequences becomes

{c(0 ! [(z'o, iq—1), (jO, Ji—l)]) "1“ d[iq, jr)

c(a *[(l0 , (*>,*)]) + d{iq, ‘ - ’)

c(a*[(z0, iv), (jo ,jr-l)]) + d(‘ - \ Jr)

where d(iq, j r) is the cost of aligning the characters iq and j r and d(iq, ‘ - ’) is the cost of

aligning the character iq against an indel. The generalization to three sequences involves

a similar recurrence but now there are seven possible columns to end the alignment of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 8

three strings. For example the seven possible first columns of the alignment of “eugene”,

“marcio” , and “brice” are:

e e e - e
m m - m - m
b - b b - - b

The only remaining question is how to score a column that aligns more than two characters,

e.g. what should d(‘e’, ‘m ’, ‘6 ’) be? More than one choice is possible but this papers deals

exclusively with the sum o f pairs cost model mentioned above, in which the cost of a column

of a multiple alignment is defined as the sum of all the pairs of characters in the column.

To illustrate with our running example, d(‘e \ ‘m \ ‘6 ’) would be defined as d(‘e’, ‘m ’) +

d(‘e’, ‘6 ’) + d(‘m \ ‘6 ’). The generalization to four or more sequences is straightforward.

Since each cell in the dynamic programming table represents one of the possible

ways to choose a prefix from each sequence, the size of the table is equal to the product

of the lengths of the sequences. Thus if the geometric mean length of n sequences is /,

the size of the dynamic programming table would be approximately ln. By evaluating the

cells of the table in a topographical order each cell can be computed from its neighbors in

0 (2 n) time. Consequently the execution time is exponential in the number of sequences

to be aligned, making it generally impractical to align more than four sequences with a

straightforward application of dynamic programming. This situation motivated Carrillo &

Lipman to discover a useful way to reduce the work required.

4.2.3 Carrillo &c Lipman’s Algorithm

One weakness with the dynamic programming algorithm described above is that

its best case running time is no better than its worst case running time. Since we have no

reason to believe th a t nucleic acid or protein sequences would be designed by an adversary,

one might hope to do better in practice than the worst case running time. Indeed, Carrillo

& Lipman [2] succeeded in doing this. Their method identifies cells of the n dimensional

dynamic programming table which can be eliminated from consideration in advance. In

hindsight, their key observation is a simple one. First observe that a lower bound on the cost

of aligning n sequences can be obtained by aligning the (£) pairs of sequences independently.

Recalling that we denote the cost of the optimal alignment of two sequences I and J by

cij{cK*j), we show a lower bound for the cost of any projection of an alignment as well as

for the overall alignment. Namely, for any alignment of the n sequences the projection of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

the alignment onto the sequences / and J has a cost of a t least Cij{a“j) and therefore the

overall sum of pairs cost of the alignment is bounded from below by L = £ i< j Cij(a'j). The

general scheme in this exposition is to show that certain alignments can be eliminated from

consideration. In particular all of the alignments which pass through certain cells of the

dynamic programming table can be eliminated.

T h eo rem 4.2.1 (C arrillo & L ipm an) Vi, j i / j ctJ(o“) — c,y(a*y) < c(a ') — L.

Proof: Note tha t c(o“) — L is

5 2 c w(a*) - c h[{amki)
k <i

This sum includes the term Cij(am) — c,;,-(<*?•) and all terms in the sum are nonnegative.

Thus the inequality holds.

Note that we do not need to know c(a*) to use this theorem. We can use an upper

bound U on the cost of aligning the n sequences, for example U might be the cost of a

feasible alignment. We have U > c(or*) and therefore

c«j(a ”) ~ Cijia’j) < U - L.

Hence we can eliminate any alignment a ' for which

C tj(o!) (o!,^) > U L.

We use three sequences (I, J , and K) to illustrate the application of this inequality. To

emphasize the three strings we write as C y (a* -[/, J , K]). Let 7r?rs denote three

prefixes of / , J , K; i.e. let wqr3 replace the notation (i'o, iq), (jo ,jr), (Ar0, ks). Similarly

let aqr„ denote the suffixes which complete the strings, i.e. let aqr3 replace the notation

(*<?i */,-)> OV, ji}), {k3, kik). Furthermore let a' be any alignment which passes through the

dynamic programming table cell which corresponds to characters iq, j r , and ks, denoted cell

(q, r, s). Equivalently a' is the concatenation of an alignment of izqr3 with an alignment of

<jqr3. This implies that

C{j(oc) > ctJ (a t i [7r9r3]) -f (a “j[<r7r3])

Thus we can eliminate any cell (q, r, s) if

c * i (a i j [7,V a]) — c i j { a i j [1 1 J t ^]) > U — L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Rearranging terms and defining 8 as 8 = U — L we obtain: eliminate if

c * j (Q ; i i [7 r 9 r s]) ^ cij(a ij[I i Ji K\) + $

Where the analogous inequalities for the projections onto (/, K) and (J, K) are also sufficient

conditions for elimination. Note tha t c,j(a;*J[7rgra]) is independent of K and can be computed

by filling in the two dimensional dynamic programming table of I versus J. Likewise

c ,j(a ” [<T9ra]) can be computed by filling in the dynamic programming table of the strings I

and J reversed. This preprocessing is done for each pair of sequences in total time 0 {n 2l2).

We end this section by showing how the bound can be used to eliminate cells for

two toy alignment problems. To keep things simple, we use the edit distance cost matrix to

score our alignment, in this scheme a match costs zero and a mismatch or indel costs one.

First we use our running example of the strings “eugene” , “mario” , and “brice” . Using edit

distance as our cost matrix, the eyeballed alignment shown previously can be verified to

cost 18. This gives us an upper bound of U = 18. It can also be verified that the cost of

independently aligning “eugene” and “mario” is 6 , while the other two pairs cost 5. This

gives us a lower bound of L = 16. This implies that the cost of the projection of “eugene”

and “mario” in the optimal three-way alignment must be no more than 8 and the other

two projections must cost no more tha t 7 each. The eliminated projections are shown in

table 4.1. The table refers to two-way alignments, which correspond to possible projections

in our three string multiple alignment.

It can be seen from the asterisks in table 4.1 that roughly half of the area of the

two dimensional tables are eliminated. Moreover it turns out th a t the optimal alignment

does in fact achieve the lower bound of 16. As shown in table 4.2, if we had know that at

the start we could have eliminated much more.

Carrillo & Lipman’s algorithm uses preprocessing to eliminate some regions of

the multiple sequence dynamic programming table. Kececioglu [6] [5] described another

algorithm that utilizes the same type of lower bound to reduce the work required. We

will describe the A* algorithm and its application to multiple sequence alignment and then

describe the relationship between A* and Kececioglu’s branch and bound algorithm. The

A* algorithm is used as a search algorithm and is described in many artificial intelligence

textbooks [10], [11]. However, for the reader’s convenience we summarize the algorithm

here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

e u g e n e
0 1 2 3 4 5 6

m 1 1 2 3 4 5 6

a 2 2 2 3 4 5 6

r 3 3 3 3 4 5 6

c 4 4 4 4 4 5 6

i 5 5 5 5 5 5 6

o 6 6 6 6 6 6 6

e u g e n e
0 1 2 3 4 5 6

b 1 1 2 3 4 5 6

r 2 2 2 3 4 5 6

i 3 3 3 3 4 5 6

c 4 4 4 4 4 5 6

e 5 4 5 5 4 5 5

b r i c e
0 1 2 3 4 5

m 1 1 2 3 4 5
a 2 2 2 3 4 5
r 3 3 2 3 4 5
c 4 4 3 3 3 4
i 5 5 4 3 4 4
o 6 6 5 4 4 5

e n e g u a
0 1 2 3 4 5 6

o 1 1 2 3 4 5 6

i 2 2 2 3 4 5 6

c 3 3 3 3 4 5 6

r 4 4 4 4 4 5 6

a 5 5 5 S 5 5 6

m 6 6 6 6 6 6 6

a n a g u a
0 1 2 3 4 5 6

e 1 0 1 2 3 4 5
c 2 1 1 2 3 4 5
i 3 2 2 2 3 4 5
r 4 3 3 3 3 4 5
b 5 4 4 4 4 4 5

a c i r b
0 1 2 3 4 5

o 1 1 2 3 4 5
i 2 2 2 2 3 4
c 3 3 2 3 3 4
r 4 4 3 3 3 4
a 5 5 4 4 4 4
m 6 6 5 5 5 5

a u g a n a a
7 8 * * * * 5

m 7 6 7 8 * * * b 6 5
a 8 7 6 7 8 * * r 7 6

r * 8 7 6 7 8 * i * 7
c * * 8 7 6 7 8 c * *
i * * * 8 7 6 7 a * *
o * * * * 8 7 6

u g a n a b r i c a
6 7 * * * 6 7 * * *
5 6 7 * * m 5 5 6 7 * *
5 5 6 7 * a 6 5 5 6 * *
6 5 5 6 * r 7 6 5 5 7 *
7 6 5 5 7 c * 7 5 5 5 6

* * 6 6 5 i * * 7 5 5 5
o * * * 6 5 5

Table 4.1: Dynamic programming tables for the three possible pairings of the strings “eu­
gene” , “marcio, and “brice” are shown. The top row shows edit distance for aligning
prefices, the middle row shows edit distance for aligning suffices, and the bottom row gives
the minimum cost of alignments which align the respective characters in the same column.
In the last column an asterisk was used when the minimum cost was greater than a known
upper bound on the cost of the two-way alignments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

e u g e n e e u S e n e b r i c e
* * * * * * 5 * * * * * * * * * *

m * 6 * * * * * b * 5 5 * * * * m 5 5 * * * *
a * * 6 * * * * r * * 5 5 * * * a * 5 5 * * *
r * * * 6 * * * i * * * 5 5 * * r * * 5 5 * *
c * * * * 6 * * c * * * * 5 5 * c ♦ * 5 5 5 *
i * * * * * 6 * e * * * * * * 5 i * * * 5 5 5
0 * * * * * * 6 0 * * * * 5 5

Table 4.2: The last row of the previous table is shown here, modified to reflect the effect of
knowing better upper bounds on the cost of the two-way alignments.

The A* algorithm can be seen as a generalization of Dijkstra’s shortest path al­

gorithm [3]. The problem is to find the shortest path in a weighted graph G(V, E) from a

designated s ta rt vertex s to a designated goal vertex 7 . The weights of G are constrained to

be nonnegative. Additionally we are provided with a lower bound hu on the distance from

each vertex u to 7 . The algorithm keeps a priority queue Q which initially contains only s.

The key for a vertex u in Q is an estimate on the cost of a path from s to 7 constrained

to go through u. Specifically, let c(u) be the length of the shortest path from s to u and

c(u) be the length of the shortest known path from s to u , then the key associated with

u is f(u) = c(u) + hu. The algorithm repeatedly removes the vertex t from Q with the

smallest / value and adds each of its adjacent vertices u to Q if extending a path from s to

u through t improves on the shortest previously known path from s to u. This process is

known as expanding t. A* continues to expand the top vertex of Q until 7 reaches the top of

Q. Pseudocode for the A* algorithm is shown in table 4.3. This pseudocode only computes

the cost of the shortest path, but the path itself can easily be computed by keeping track

of the neighbor which was responsible for the last update of c(u) for each vertex u.

The termination condition in table 4.3 assumes that the lower bounds satisfy the

consistency condition which requires that for any two vertices u, v, hu — hv is no more than

the shortest path distance from u to v. If this condition holds, then when the algorithm

expands a vertex t the shortest path to t will be known to the algorithm, i.e. c(t) = c(t)

and f(t) = f (t) , where /(£) = c(t) + hu. The proof is given in Nilsson [10] but the intuition

comes from the observation that on any path from s to 7 the / values never increase.

Another important consequence of the consistency condition is tha t when it holds the A*

algorithm never expands vertices u such tha t f(u) > 0 (7). See Cormen et a/[3] and Russell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Q <— s
c(s) «— 0

Vu s , c(u) <— oo,
until termination

t <— vertex in Q with smallest / value
if t = 7 then terminate with success,
else

Expand (t)

Subroutine Expand(t)
foreach vertex u adjacent to t

if c(t) + U7(f —»• it) < c(u) then
c(u) i— c(t) + w(t —)• u)
Add u to Q

remove t from Q

Table 4.3: Pseudocode for the A* algorithm (assuming the consistency condition holds).
w{t-+ u) denotes the weight of the edge from t to u.

& Norvig[ll] for details on efficient implementation and other issues regarding general

applications of D ijkstra’s algorithm and A*.

How is A* used for multiple alignment? The multiple alignment dynamic program­

ming problem can be expressed as a shortest paths problem over a graph whose vertices

correspond to entries in the dynamic programming table and whose edges and edge weights

correspond to the possible transitions between neighboring vertices and their costs, respec­

tively. Meyer [7] gives a nice description of this graph for the alignment of two sequences,

which he refers to as the edit graph. Araki et a i [1] used the A* algorithm on an edit

graph to speed up the alignment of two sequences; they used completely different bounds

than the ones used for multiple sequence alignment but they do show how one can add

suitable constants to any cost matrix to ensure that all edges in the edit graph have non­

negative weight, without changing the relative order of costs for different alignments. In

the case of aligning three sequences, a vertex is associated with one character from each of

the three sequences (except for vertices which lie on boundaries), and a path up to that

vertex represents an alignment of the prefixes of each of the three strings which end with

the respective character associated with the vertex. Each vertex (again excluding boundary

vertices) has an in-degree and out-degree of seven. The seven incoming edges represent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Figure 4.1: A schematic drawing of the vertices which might be explored using A* with an
edit graph of three sequences is shown. The start vertex is in the lower left, while the goal
vertex is at the upper right

the seven possible ways to fill three positions with either characters or indels, where filling

all three of the available positions with indels is disallowed. If the lower cost bounds are

effective only a small portion of the edit graph will be explored. A schematic of how A*

might explore the edit graph of three sequences is shown in figure 4.1.

4 .2 .4 A " versus K ececiog lu ’s branch and bound algorithm

The branch and bound algorithm described by Kececioglu [6], [5] is almost identical

to the A* algorithm described in the previous section, and indeed shares many of the

advantages of A*. However there is a crucial difference between the two. The difference

is in the way that the priority queue and the lower bounds on finishing an alignment are

used. For Kececioglu’s algorithm the key for the priority queue is just the distance from

the s tart vertex. The lower bound is only used when expanding a vertex. When a vertex is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

expanded any newly reached adjacent vertices u are added to the queue if and only if

f(u) = c(ti) + hu < U.

where U is an upper bound on the cost of the optimal path. As stated above, the A*

algorithm only expands vertices for which f(u) < c(7). Thus the two algorithms should

have roughly the same efficiency if the upper bound is tight, i.e. U = c(7). If the upper

bound is loose however, the A* algorithm will be expand fewer vertices. This is illustrated

by the extreme case in which the lower bounds are perfectly tight but U is set to infinity.

In that case the A* algorithm only expands vertices on an optimal path but Kececioglu’s

algorithm degenerates to Dijsktra’s shortest path algorithm, completely unable to use the

lower bounds to advantage.

4.3 A * D om inates Carrillo & Lipm an’s Algorithm

In this section we show that A* dominates Carrillo & Lipman’s preprocessing

algorithm in the sense that it expands no more vertices than the number of dynamic pro­

gramming entries which must be computed by Carrillo & Lipman’s algorithm. To do this

we prove two things: first that A* never expands a vertex twice, and second tha t A* never

expands a vertex which corresponds to a dynamic programming table entry that Carrillo &

Lipman’s algorithm could eliminate.

4.3.1 A " N ev er Expands a V ertex T w ice

To show that the A* algorithm described here never expands a vertex twice it

suffices to show that the lower bounds satisfy the consistency condition [10]. To do this

we must prove th a t the difference in the lower bound between two vertices is never greater

than the shortest path distance between those two vertices. More formally, let the first

vertex in question be the vertex which represents aligning the prefixes ending in the qth,

rth , and sth characters of the sequences I , J , and K respectively. Likewise let the second

vertex in question represent the alignment of the prefixes ending in the uth, uth, and tuth

characters of the three sequences; where q < u, r < u, and s < w, i.e. where in the edit

graph corresponding to aligning / , J , and K the second vertex is reachable from the first.

We must prove th a t hqr3 — huvw < c(or*[/>]), where p denotes the three substrings containing

the u — q characters of I starting with the 9 + 1th character, and the analogous characters of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

J and K , i.e. p replaces the notation (iq, iu), (jr,jv)t (ks,k w). Let <rqr3 be defined as before

and defining (Tuvw analogously we make the following observation:

c i j i ^ i j [° V . j]) < C*J + c i j { a i j [a u v w])

< ctfc(Q;{jt[p]) "I" ctfc(o;,7:[o'uuu;])

cjh{ajkWqrs]) ^ cjk{ajk\ft]) + Cj k (aj k Wuvw]) •

The equalities hold when an optimal alignment of the suffixes cqTS ends in an alignment

of the suffixes auvw. In tha t case a*j[<7 uuu;] represents the least costly way to finish the

alignment.

However the left hand sides of these inequalities sum to A,rs, while the second

terms of the right hand sides sum to huvw. Also from our earlier observations we know

tha t the sum of the cost of independently aligning all possible pairs of three substrings

gives a lower bound on the cost of aligning the three substrings. Thus the sum of the first

terms of the right sides of the inequalities is a lower bound for c{a'[p\). This gives us:

hqrs < c(a*[p]) + huvw, finishing the proof.

4 .3 .2 A “ Expands Fewer Vertices than Carrillo & Lipman

In this section we will show that Carrillo & Lipman’s condition for eliminating a

cell in the dynamic programming table also implies that the Am algorithm will never expand

the corresponding vertex in the edit graph. Before we begin a formal proof we would like

to give some intuition as to why A* should expand fewer vertices than Carrillo & Lipman’s

algorithm calculates. The bounds used by the two algorithms are similar but there are three

kinds of information tha t A* gains by “deferring” the decision to eliminate a vertex instead

of eliminating during preprocessing. First, the cost of a good feasible alignment is not

needed as the A* alignment will know the cost of the optimal alignment when it terminates.

Second, when expanding an intermediate vertex the A* alignment knows the exact cost of

aligning the prefixes associated with that vertex and needs to use a lower bound estimate

only for the cost of aligning the corresponding suffixes. Third, A* may eliminate more

vertices because it compares the sum of the deviations for ail pairs of sequences from their

lower bound estimate to S rather than just looking a t one pair at a time as the algorithm

described by Carrillo & Lipman does. Note tha t in general A* will eliminate more vertices

th a t Carrillo & Lipman even if the upper bound U is perfectly tight.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

More formally, recall from section 4.2.3 th a t Carrillo & Lipman’s condition for the

elimination of the dynamic programming table cell corresponding to the characters iq, j r

and k3 may be written as:

CV (a ij[^qrs]) + [°?rs]) > cij(a i j[^ *7| A]) + (4-1)

Similarly the cell can be eliminated if the analogous condition holds when (I, J) is replaced

by (I, K) or (J, A). To facilitate the discussion however, we will only consider one particular

cell, note that we may name the strings so that if the cell is to be eliminated the above

condition written with (/, J) must hold.

Now we show that Carrillo & Lipman’s condition implies that the A* algorithm

will never expand the corresponding vertex. In section 4.2.3 we stated without proof th a t a

vertex w will not be expanded if f (w) > c(7). Again considering the vertex corresponding

to the characters iq, j'r , k3 and substituting the specific costs and lower bounds used for

multiple sequence alignment we obtain:

c (o : [TTgrs]) + hqrg = c{oi [Vgr-s]) -j- C { j(ot{j[<̂ qrs]) 4" 4" C j k fc[°gr s]) > c (or) (4 .2)

Theorem 4.3.1 (Horton &: Lawler) The A* algorithm will never expand a vertex which

would be eliminated by Carrillo & Lipman’s preprocessing step. Or equivalently, equation 4-1

implies equation 4-2.

Proof: from equation 4.1, expanding 6 and cancelling terms gives:

c«i(a ij[7r9r*]) 4” ct‘i (Q;tj[0 7r ®]) U — <7, A]) — Cjk(&jk[I, J i A -]),

Adding cl-fc(or*Jk[7r,ra]) 4- e^ a ^ D r,,.,]) to both sides gives:

c . i (a * iK r S]) + Cik(Qik[irqr3]) + cyife(aJfc[jr,rJ) + c y (a » [< v ,]) > U + c,-fc(a^[7rgrj]) + cifc(a ; fc[7r,rJ)

- cik(ark[I, J , A]) ~ •*[/, J, A]).

Again however, we know that the cost of aligning the prefixes independently gives a lower

bound on the cost to align them, i.e. c(a-*[;r,rs]) > ctJ (Q!*J[7r9ra])+cJjt(aJ,A.[7r,rJ])+Cjjt(a^A.[7r?rs]).

This gives us

c(a: [fl^rs]) 4~ ct j (° ;ij[0’gra]) > U + ctfc(Ojfc[7fjrs]) 4* CjfcC^jfct^rs]) — cik{a ikU f A]) — Cjk{a jk[^ i •?•> A]) (4.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Here we observe that

cik{a ik[Ii Ji ^ - 1) - " f “ ^ t f c C ^ i f c t ^ g r s])

or equivalently,

C<̂ (Q;iJt[7r9 '"s]) ~ cik(aik[11 Ji K]) > —Ct7:(o;tfc[t7gr5]).

This is clear because the optimal prefix and suffix alignments can be concatenated to produce

a feasible alignment of the strings I and K . Combining this inequality and the analogous

inequality for (J , K) with equation 4.3 we obtain:

c (O r [i T q r J) + c i j (Q ; j j [< 7 7 r *]) U ~ c t f c (Q ; i f c [o ’ < j r s]) — cjk (^ j j f c t ^ q r s]) •

c{pC [^ r s]) + Ciji&tjfoqrs]) + c t f c (° ! i A : [0 ’7 » ‘ *]) d " cjk{0ejk[°'qrs\) > U.

We have by definition U > c(a*). This gives

c(d [7 T 9 r a]) + C , j (cx-j[t T g r s]) + C { f c (& i & [0 f r 4]) + C j A ^ j J f c t O g r *]) > c (a) ,

which completes the proof.

4.4 Conclusion

We have shown th a t for a reasonable measure of work, namely the number of

vertices expanded, the A* algorithm is in general more efficient that the algorithm presented

by Carrillo & Lipman [2]. A* also has a smaller but provable advantage over the branch

and bound algorithm of Kececioglu [6] [5]. Carrillo & Lipman’s algorithm does not require

a priority queue and thus it may still be faster for some problems. However Kececioglu

reports tha t by implementing the priority queue as a bucketed heap for his algorithm, the

overhead of the queue is more than compensated for by the reduced number of vertices

that need to be visited. This empirical result should apply directly to the A* algorithm

described here as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Bibliography

[1] S. Araki, M. Goshiraa, S. Mori, H. Nakashima, S. Tomita, Y. Akiyama, and M. Kane-

hisa. Application of parallelized dp and a* algorithm to multiple sequence alignment.

In Proceedings of the Genome Informatics Workshop IV, pages 94-102, Tokyo, 1993.

Universal Academy Press.

[2] H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology. SIAM

J. Appl. Math, 49:1073-1082, 1988.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1989.

[4] M. O. DayhofF, editor. Atlas o f Protein Sequence and Structure, volume 5. Natl.

Biomed. Res. Fournd., Washington, DC, 1978.

[5] Sandeep K. Gupta, John D. Kececioglu, and Alejandro Shaffer. Making the shortest-

paths approach to sum-of-pairs multiple sequence alignment more space efficient in

practice. In Proceedings of Combinatorial Pattern Matching, 1995.

[6] John Kececioglu. A branch-and-bound algorithm for minimum sum of pairs multiple

sequence alignment. May 1992.

[7] Eugene Meyer. An overview of sequence comparison algorithms in molecular biology.

Technical Report TR 91-29, Computer Science, University of Arizona, December 1991.

[8] M. M urata, J. S. Richardson, and J. L. Sussman. Simultaneous comparison of three

protein sequences. Proc. Natl. Acad. Sci., USA, 82:3073-3077,1985.

[9] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequences of two proteins. Journal o f Molecular Biology,

48:444-453,1970.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

[10] N. J. Nilsson. Problem Solving Methods in Artificial Intelligence. McGraw-Hill, 1971.

[11] S. Russell and P. Norvig. Artificial Intelligence, A Modem Approach. Prentice Hall,

1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Part II

A pplication o f M achine Learning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

C hapter 5

Learning to Classify P rotein

Sequences by their Cellular

Localization Sites

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

A b strac t

This Chapter describes the first application of machine learning to the problem
of classifying protein sequences by their cellular localization sites. The results of
three studies are consolidated and presented: [10], [11], and [9] respectively. The
first two studies used expert defined features while the third study attempted to
discover new features. The first study developed a probabilistic model which is
easy to interpret and classifies reasonably well. The second study compared the
accuracy of the probabilistic model to the standard k nearest neighbor (&NN),
binary decision tree, and naive Bayes classifiers. The result being that &NN
performed best with an accuracy of approximately 60% for 1 0 yeast classes and
8 6 % for 8 E.coli classes. That study also compared the effectiveness of using
&NN with distances defined by sequence similarity with the results being highly
favorable to the problem specific expert defined features. Lastly, the third study
describes an attempt to discover interesting substring features, using the suffix
tree data structure for efficiently calculating the correlation between substrings
in the protein sequences and their localization sites. As implemented this ap­
proach did not yield higher classification accuracy but was anecdotally successful
in automatically finding a meaningful biological feature th a t was unknown to us
a t the time we created the program.

K eyw ords: Protein Localization, k Nearest Neighbor Classifier, Classification, Feature

Discovery, Yeast, E.coli

5.1 Introduction

In order to function properly, proteins must be transported to various localization

sites within the cell. Conversely, the cellular localization site of a protein affects its potential

functionality as well as its accessibility to drug treatments. Fortunately the information

needed for correct localization is generally found in the protein sequence itself. We begin this

chapter with a description of the process of protein localization. The description provided

is a simplified one which is only intended to motivate and clarify the work and discussion

presented in this chapter. We then describe the classes (localization sites), features, and

datasets (protein sequences) used throughout the chapter.

Our motivation for applying machine learning to this problem came both from the

success of an earlier system and its drawbacks. The first integrated system for predicting

the localization sites of proteins from their amino acid sequences was a production type

expert system [18], [19]. That system is still useful and popular but it requires hand tuning

of certainty factors for each rule to obtain maximal performance. This makes it very time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

consuming to update or adapt to new organisms, as well as making cross-validation studies

impossible. Thus we were in the favorable position of knowing tha t even if we could only

roughly match the accuracy of the expert system with a program th a t learned how to classify

automatically, we would be able to make a significant contribution.

We succeeded in doing this with the development of a structured probabilistic

model [10]. The structure of the model reflects the beliefs of a human expert but, once

the structure is defined, parameters of the model are estimated from the data without

any need for hand tuning. The input for the model is a vector of real valued features

calculated directly from the protein sequence and the output is a probability vector giving

the estimated probability that the protein belongs to any class. The model itself can either

be viewed as a probabilistic analog to decision trees or as a restricted form of Bayesian

network. We also report the results of comparing three different schemes for dealing with

continuous variables.

The next section reports the results of comparing different classifiers on our protein

localization dataset [1 1]. Our probabilistic model had two goals. The main goal was to

obtain a high classification accuracy, but there was also a secondary goal of creating a

model that could be interpreted in terms of what is known about the process of protein

localization. However for many practical uses, the classification accuracy is all that matters.

This situation motivated us to compare three standard classification algorithms, ANN, Naive

Bayes, and the binary decision tree to our probabilistic model. The difference in accuracies

between the algorithms were not dramatic but the ANN algorithm did outperform the others

on both the yeast and the E.coli dataset. In particular, using a paired-differences t test,

the accuracy of ANN on the yeast dataset was significantly higher than the other classifiers.

Another im portant comparison reported in this section is the comparison between using the

expert identified features with ANN versus simply using sequence similarity with ANN. The

results show th a t sequence similarity is not as effective as the expert identified features.

The last study in this chapter describes a method for discovering interesting sub­

string features. The ultimate aim being to automatically find features which could comple­

ment the expert identified features. The method works directly with the protein sequences,

instead of using the expert identified features. A common approach to finding substring

features is to examine the frequency distribution of substrings of a fixed length. However the

restriction of substrings to a fixed length is unnecessary, since by using the suffix tree data

structure the frequencies of all substrings can be examined (indirectly for most substrings)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

efficiently. We uses the suffix tree data structure combined with a x 2 statistic test to identify

substrings which correlate closely to specific classes. Finally those substrings were used as

input to induce a decision tree. The method was able to find features with enough power to

classify significantly better than the baseline majority class classifier but not enough power

to classify as well as sequence similarity, let alone the expert identified features. However

the method did consistently identify a substring which has known biological significance,

(but is not a t all obvious when examining the data manually).

We conclude this chapter with a discussion of possible extensions to this work.

Both in terms of protein localization, and biosequence classification problems in general.

5.2 P rotein Localization

5.2.1 M em branes and C om partm ents

P art of the structure of biological cells is due to the presence of membranes, which

are normally impermeable to large molecules such as proteins. These membranes separate

the inside of the cell from the exterior environment as well as subdividing most cells into

different compartments. The structure of a Gram-negative bacteria such as E.coli is shown

in figure 5.1. Each membrane and each compartment has its own functions and requires its

own repertoire of proteins.

5.2.2 L ocalization in E . c o l i

In bacteria all proteins are made in the cytoplasm. Proteins which perform their

functions in membranes or in other compartments, such as the periplasmic space, must be

recognized and transported across (or into) the appropriate membranes. The presence of a

length « 1 0 substring of hydrophobic amino acids known as a signal sequence allows proteins

to enter the inner membrane. When the signal sequence is found near the N-terminus of

the protein it is often cleaved after the protein enters the inner membrane. The mechanism

for the localization of lipoproteins is somewhat different as the lipid portion, rather than

the protein portion, often serves to anchor the protein to the appropriate membrane. It has

been empirically observed th a t lipoproteins with a positively charged residue a t position 2 or

3 of the mature protein are usually localized to the inner membrane while other lipoproteins

are usually localized to the outer membrane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

5.2 .3 Localization in Yeast

Eukaryotic cells, such as yeast, have many more compartments than bacteria, as

shown in figure 5.2. In eukaryotic cells most proteins are coded in DNA found in the nucleus

and synthesized in the cytoplasm. Mitochondria also have their own DNA and the proteins

th a t they code for are made inside the mitochondria (and stay within the mitochondria).

However, the majority of mitochondrial proteins are imported from the cytoplasm. This

work only considers nuclear encoded proteins so we will simplify the discussion by hereafter

ignoring the existence of proteins made in the mitochondria.

The Secretory Pathway.

Many proteins in eukaryotic cells are localized as part of the secretory pathway.

Proteins whose final destination is the lumen of the Endoplasmic Reticulum (ER), the Golgi

body, the membranes of either of those organelles, the plasma membrane, the cell wall, or

outside of the cell itself all use the secretory pathway. In the first step of the secretory

pathway a nascent protein, i.e. one that is in the process of being synthesized, is passed

into the membrane of the ER. Membrane proteins do not pass all the way through but

are retained in the membrane. A eukaryotic signal sequence, a length 6-12 substring of

hydrophobic amino acids similar both in function and composition to the bacterial signal

sequence, is generally found within the first 25 amino acids of the protein. The constraints

on the signal sequence are loose enough that many variations are possible. This variation

is illustrated in the example signal sequences found in table 5.1. Most signal sequences

are cleaved by enzymes in the ER to form the mature protein. However some membrane

proteins have internal signal sequences, i.e. signal sequences which are further from the

N-terminus, which are not cleaved. Once localized to the ER, the secretory pathway defines

a kind of “default” pathway for proteins. Unless specific retention signals are present,

membrane proteins flow from the ER to the Golgi body membrane and then on to either

the plasma membrane or the membrane of the vacuole. Likewise proteins transported to the

ER lumen tend to flow to the lumen of the Golgi body and then out of the cell or into the

inside of a vacuole. Some retention signals have been fairly well characterized, for example

although they are temporarily transported to the lumen of the Golgi body, proteins with a

C-terminal suffix of HD EL (Histidine-Aspartic Acid-Glutamic Acid-Leucine) are specifically

returned to the ER (HDEL is the suffix in yeast but other eukaryotic cells generally use a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Structure of Gram-negative Bacteria

Cytoplasm

Periplasmic space
luter Membrane

Cell Wall

Inner Membrane

Figure 5.1: A schematic depiction of the membranes and compartments of Gram-negative
Bacteria is shown.

Lysine in place of the Histidine, yielding KDEL). O ther signals are partially characterized,

for example a single membrane spanning a helix is known to cause some proteins to be

retained in membrane of the Golgi body. Still other targeting signals are not well understood

in terms of their sequence requirements.

Protein
Preproalbumin
Pre-IgG light chain
Prelysozyme
Preprolactin
VSV glycoprotein
Rat proinsulin-1
Acetylcholine receptor 7 subunit precursor

N-terminal prefix
M KW VTFLLLLFISGSAFSR
MDMRAPAQIFGFLLLLFPGTRCD
MRSLLELVLCFLPLAALGK
MNSQVSARKAGTLLLLMMSNLL
MKCLLTLAFLFIHVNCK
MALWMRFLPLLALLVLWEPKPAQAF
M VLTLLLIICLALEVRSE

Table 5.1: Adapted from [4]. The first (i.e. N-terminal) few amino acids of several proteins
which function as eukaryotic signal sequences are shown. Runs of hydrophobic acids are in
boldface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Structure of a Yeast

ER MembraneEndoplasmic Reticulum (ER) Lumen
Golgi Body Membrane

-Peroxisomes

I Nucleus

Vacuole
Cytoplasm

Plasma Membrane

Mitochondria

Figure 5.2: A schematic depiction of the membranes and compartments of a yeast cell is
shown.

Other Pathways.

Proteins localized to the mitochondria, peroxisomes, and the nucleus do not use the

secretory pathway. Instead their proteins are directly imported from the cytosol. Like the

signal signals in the secretory pathway, partially characterized sequence motifs are known

to cause proteins to be imported into mitochondria and peroxisomes. Many (but not all)

proteins imported into the mitochondria have a targeting signal near their N-terminal. The

signal is a loosely defined pattern of 3-5 nonconsecutive arginine or lysine residues typically

surrounded by serine or threonine residues and excluding any acidic amino acid residues.

Proteins which are imported into the peroxisomes often have the substring “serine-lysine-

leucine” near their C-terminus.

Import to the Nucleus.

In contrast to other membranes, the import of proteins across the nuclear mem­

branes occurs through relatively large nuclear pores. These pores make it possible for

proteins to pass through the nuclear membrane in a folded state, in some cases even while

complexed with another protein. However, it is still not possible for medium or large sized

proteins to passively diffuse through the pores, and like other organelles, a signal is recog-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

nized in proteins before they are carried through the pores. In several proteins a length

5 substring of basic residues or two shorter substrings of basic residues separated by 10

residues has been experimentally shown to be required for nuclear localization. This nu­

clear localization signal must occur on the surface of the folded protein but, except for that

constraint, may occur anywhere in the amino acid sequence. Only one protein in a protein

complex needs to have a nuclear localization signal for the complex to be imported into the

nucleus.

5.3 D atasets

5.3.1 Sequences

We used two datasets: an E.coli dataset with 336 proteins sequences labeled ac­

cording to eight classes (localization sites) and a yeast (specifically Saccharomyces cere-

visiae) dataset with 1484 sequences labeled according to ten classes. In some of our exper­

iments a few of the yeast sequences were discarded. We defined two additional datasets:

a non-identical dataset of 1462 sequences which contained no identical sequences, and a

“non-redundant” dataset of 1386 sequences which contained no pair of sequences with more

than 50% identity (after alignment). The class information was taken from the annotations

of SWISS-PROT[l] for the E.coli sequences and from’the YPD[27] for the yeast sequences.

5.3.2 E . c o l i c lasses and features

Proteins from E.coli were classified into eight classes shown with their frequencies

in table 5.2. Seven expert identified features were used and are summarized in table 5.3.

5.3.3 Yeast classes and features

Proteins from yeast were classified into 10 classes shown with their frequencies in

the non-identical dataset in table 5.4. Eight expert identified feature were used, three of

which (aim, gvh, and meg) were the also used for the E.coli classification. A brief description

of the other five features is shown in table 5.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Classes for the E.coli D ataset
Class Abbr. Number
Cytoplasm cp 143
Inner membrane, im 77

no signal sequence
Periplasm PP 52
Inner membrane,

uncleavable signal sequence imU 35
Outer membrane non-lipoprotein om 2 0

Outer membrane lipoprotein omL 5
Inner membrane lipoprotein imL 2

Inner membrane, imS 2

cleavable signal sequence

Table 5.2: The names, abbreviations and number of occurrences of each class for the E.coli
dataset are shown.

5 .3 .4 D ataset Issues

An inspection of the class definitions makes it clear tha t some classes are actually

localized to the same part of the cell, for example im, imU , imL, and imS are all in fact

localized to the inner membrane. The rationale behind dividing the inner membrane pro­

teins into several classes is tha t the different classes are localized by different mechanisms.

This is useful if your goal is to model the process but not necessarily useful for increasing

prediction accuracy. This issue is explored further in the discussion section of study 2. In

other cases several distinct localization sites have been lumped into one class. For example

although all mitochondrial proteins are considered here as class “MIT” , it is known tha t

mechanisms exist to further localize those proteins to the inner or outer membrane of the

mitochondria or the matrix or intermembrane space of the mitochondria. Thus the choice

of classes is somewhat arbitrary but in general reflects what is known about the localization

process as well as the availability of sufficient data for the localization sites. The datasets

used are available from the UCI Machine Learning Data Repository [17] and are described

in more detail in [18], and [19].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Features for the E.coli Dataset
Feature name
Modification of McGeoch’s signal sequence detection parameter[16]
The presence or absence of the consensus sequence[26] for Signal Peptidase II
The output of a weight matrix method for detecting cleavable signal sequences

by von Heijne’s method[25]
The output of the ALOM program[12] for identifying membrane spanning

regions on the whole sequence
The output of the ALOM program on the sequence excluding the region

predicted to be a cleavable signal sequence by von Heijne’s method[25]
The presence of charge on the N-terminus of predicted mature lipoproteins
The result of discriminant analysis on the amino acid content of outer

membrane and periplasmic proteins

meg
lip

gvh

alm l

alm 2

chg

aac

Table 5.3: A description of the E.coli features and their names are shown.

Class Abbr. Number
Cytoplasm CYT 444
Nucleus NUC 426
Mitochondria MIT 244
Membrane protein, ME3 163

no N-terminal signal
Membrane protein, ME2 51

uncleaved signal
Membrane protein, M El 44

cleaved signal
extracellular EXC 35
Vacuole VAC 30
Peroxisome POX 2 0

Endoplasmic Reticulum ERL 5

Table 5.4: The names, abbreviations and number of occurrences of each class for the yeast
dataset are shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Features for the Yeast D ataset
Feature name
The presence or absence of HDEL suffix erl
The result of discriminant analysis of the amino acid content of vacuolar

proteins vs. extracellular proteins vac
The result of discriminant analysis of the amino acid content of the 20-residue

N-terminal region of mitochondrial and non-mitochondrial proteins mit
The presence or absence of nuclear localization consensus patterns combined

with a term reflecting the frequency of basic residues nuc
The presence or absence of a short sequence motif combined with the result of

discriminant analysis of the amino acid composition of the protein sequence pox

Table 5.5: A description of the yeast features and their names are shown. Features found
in the table for E.coli were omitted.

5.4 Probabilistic M odel

5.4.1 M odel D efin ition

Proteins are synthesized a t a common location, namely the cytosol, and then cross

a series of membranes, one by one, before reaching their appropriate destination. Thus the

path a protein takes can be visualized as a rooted tree where the branches represent binary

events such as whether or not the protein enters a membrane or whether or not the protein

exits a membrane it has entered. With this image in mind, we defined a simple model

for the probabilistic classification of objects. The model consists of a rooted binary tree

with a feature variable associated with each non-leaf node of the tree, as in figure 5.3a.

The “classification variables” , or nodes of the tree, are boolean variables which represent

membership in some set of classes. The leaves of the tree represent the possible classes into

which an object can be classified. A non-leaf node n represents the union of all the classes

which belong to leaves tha t are descendants of n (in this section we will refer to th a t set

of classes as the class of node n). When performing inference, each node has a probability

associated with it, the probability of n being true represents the probability that an object

belongs to ra’s class. Since the children of a node represent a partitioning of the node’s class,

it follows that the probability th a t a node is true must equal the sum of the probabilities

th a t its children are true. For example in figure 5.3, Pr[C\] = Pr[Cio] + P r[C n]. Each

non-leaf node n has a feature variable Fn and a conditional probability table (or function)

associated with it. The influence of the features of an object on whether it should be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.3: (a.) An example of a classification tree with its feature variables. The dotted
edges represent feature variables associated with classification variables, (b.) One possible
equivalent Bayesian network; where Fi and Froot are clamped variables.

classified as being a left descendant of n versus being classified as a right descendant of

n is assumed to be completely summarized by Fn. For example in figure 5.3 this would

imply tha t P r\C u\C \,F {[= Pr\C n\C u F \t Froot\. This conditional independence allows us

to calculate the probability of each node given a set a values for the feature variables, and

the appropriate conditional probability tables, with one traversal of the tree. The traversal

starts with the root which always has a probability of 1 . Although we did not originally

conceptualize this model as a family of Bayesian networks, it can be expressed as such. For

readers who prefer to think in terms of Bayesian networks, the translation of our example

to a Bayesian network is shown in figure 5.3b.

5.4.2 C lassification Trees for E . c o l i and Y east

W ith the help of a human expert, we built one classification tree each for E.coli and

yeast shown in figures 5.4 and 5.5. The structure of these classification trees roughly reflects

the localization pathways. For example the left subtree of both classification trees reflects

proteins with signal sequences. Furthermore the left subtree of the yeast classification tree

(figure 5.5) represents the secretory pathway with downstream locations corresponding to

nodes of greater depth in the tree. Of course some paths in the classification trees do not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

reflect biological pathways. For example, the order of the nodes in the right subtree of

the yeast classification tree is essentially arbitrary from a biological point of view, since

proteins are transported directly from the cytosol to the mitochondria, peroxisomes, and

the nucleus.

meg)

Figure 5.4: The classification tree used for E.coli protein localization is shown. The leaf
nodes are labeled with the class that they represent, while the other nodes are labeled with
their feature variable. All the edges shown are directed downward and the edges connecting
feature variable to their classification variables are not shown explicitly. The labels are
abbreviations (see tables 5.2 and 5.3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

5.4.3 C onditional Probabilities from C ontinuous Variables

If the feature variables are discrete variables then the conditional probabilities, e.g.

Pr[C\i = l |C i = l ,F i = 1] may be estimated by counting the frequency of the examples

in the training data for which Fi = 1 & C u = 1 and dividing by the frequency of examples

for which Fi = 1 & C\ = 1. Indeed the features: lip, chg, and erl, were discrete variables

and required no further processing. However, the other features in this application were

“continuous” variables, i.e. variables with a large or infinite number of possible values. We

simplified the problem somewhat by using a linear transformation to normalize the feature

values to fall within the range of [0,1]. We then tried three approaches for dealing with the

resulting values: uniform binning, Fayyad-Irani binning, and fitting a sigmoid curve.

Uniform Binning

In the first two method we discretized the values by dividing [0,1] into intervals

and treated each interval as a single value. The intervals were chosen such th a t a roughly

equal number da ta points (i.e. values of the feature variable in question for the sequences

in our training data), fell into each interval. Unfortunately, we were not able to derive

a well principled criterion for how many intervals the range [0 , 1] should be divided into.

Instead we somewhat arbitrarily tried making a number of intervals equal to either the log

to the base 2 of the number of relevant examples, or the square root of the number of those

examples. Here relevant means that the examples belong to the class of the node whose

feature value we were discretizing.

5.4.4 Fayyad-Irani binning

The second method we employed is known as Fayyad-Irani binning[5]. This method

first chooses a threshold which splits the interval [0 , 1] into two bins such th a t the weighted

sum of the entropy of the class frequencies in the training examples in each bin is minimal;

with the entropy of each bin being weighted by the fraction of the examples it contains.

The algorithm is then recursively applied to each bin until further splitting is deemed

unjustifiable. We quit splitting when a x 2 test failed to show a significant difference between

the class frequencies found in a bin versus the frequencies which would result from splitting

the bin. Fayyad-Irani binning is a special case of binary decision tree induction which is

described in study 2. This method seems less arbitrary than uniform binning but we did

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

not learn of it until after our first study had been completed.

5.4.5 S igm oid C onditional Probability Function

The third method we employed does not discretize the values but learns a condi­

tional probability function in the form of the sigmoid function G (F i) = 1+e(aV,+M • More

specifically suppose tha t we want to learn the conditional probability function P r[C x|F x]

from figure 5.3. Let Fu denote the value of Fx for the ith example of the training data. We

used gradient descent to choose values for a x and 6 X which minimize

XXfW-Cn)2
i

where Cxx equals one when true, i.e. for examples of class C xx, and zero otherwise. The

summation is over all the examples of class Cx. We subscripted a and b here to indicate

that a separate pair of a and b parameters are learned if a feature variable is used more

than once in the tree. This sigmoid function does not have a local minimum and therefore

gradient descent is sufficient for learning optimal values for a and b. The reader may observe

that this procedure is equivalent to using a feed-forward neural network with just one input

node and one output node to learn the mapping from feature variable values to conditional

probabilities.

5.5 Study 1: Different Binning Strategies w ith the Classifi­

cation Trees

This section reports the results of the first application of machine learning to the

protein localization problem[1 0].

5.5.1 R esu lts o f S tud y 1

We report the results of 10-fold cross-validation tests using our probabilistic model.

Tables 5.6 and 5.7 show the overall accuracy the E.coli and yeast classification trees with

three different binning strategies. For yeast we ran the experiment for both the original

dataset and the “non-redundant” dataset. For the sigmoid function, the accuracy for each

class is broken down in tables 5.8 and 5.9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Results of E.coli Protein Classification Using 3 Strategies
sigmoid log square root

all data 84.2% 79.8% 82.7%
X-valid 81.1%, 7.7 79.1%, 10.1 80.6%, 7.1

Table 5.6: The accuracy of classifying E.coli proteins by three different strategies for learning
conditional probabilities of continuous variables is shown. The cross-validation row gives
the average accuracy and its standard deviation for each strategy.

Resu ts of Yeast Protein C assification Using 3 S tra t
sigmoid log square root

all data 54.5% 54.2% 56.5%
X-valid 54.9%, 4.9 53.9%, 4.1 54.3%, 4.4
non-red. 54.4% 55.6% 55.9%
X-valid 54.1%, 4.9 53.9%, 5.0 55.0%, 4.2

egies

Table 5.7: The accuracy of classifying yeast proteins by three different strategies for learn­
ing conditional probabilities of continuous variables is shown. The third line reports the
accuracy for training on all of the non-redundant dataset (described in the text), and the
fourth line reports the cross-validation accuracy for tha t dataset. The cross-validation rows
show the average accuracy and its standard deviation for each strategy.

Results of E.coli P ro tein Classification Using Sigmoid Conditional Probability

Functi ons
Examples Class High Top2

77 im 77.9% 89.6%
143 cp 96.5% 1 0 0 %

2 imL 50.0% 50.0%
5 omL 1 0 0 % 1 0 0 %

35 imU 71.4% 91.4%
2 imS 0 .0 % 0 .0 %

2 0 om 65.0% 85.0%
52 PP 78.9% 94.2%

Table 5.8: The accuracy of classification of E.coli proteins is displayed for each class when
all of the data was used for training. For each class the number of examples in the training
data, the percentage of sequences for which the correct class matched the class with the
highest computed probability, and the percentage which matched one of the classes with
the 2 highest computed probabilities is shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Results o f Yeast Protein Classification Using Sigmoid Conditional Probability

Functi ons
Examples Class High Top2

44 M E1 63.6% 81.8%
5 ERL 60.0% 80.0%

30 VAC 1 0 .0 % 13.3%
35 EXC 45.7% 60.0%
51 ME2 15.7% 52.9%

244 MIT 47.1% 56.6%
429 NUC 35.7% 90.2%

2 0 POX 0 .0 % 0 .0 %
163 ME3 85.3% 92.0%
463 CYT 74.3% 93.1%

Table 5.9: The accuracy of classification of yeast proteins is displayed for each class when all
of the data was used for training. For each class the percentage of sequences for which the
correct class matched the class with the highest computed probability, and the percentage
which matched one of the classes with the 2 highest computed probabilities is shown.

5.5.2 A ttem p te d Extensions to th e P robabilistic M odel

The probabilistic model is very restrictive in allowing only one feature variable to

be used at each node. If the feature variables are perfectly effectively in detecting what they

are designed to detect than that restriction is perhaps a desirable one, but with biology we

cannot expect th a t to be the case very often. The assertions of conditional independence

implied by the tree structure, for example

P rlC nlC uF J = Pr[Cn\C lt Flt Froot]

can be tested with a x 2 test. Indeed there are several combinations of nodes and their

associated feature variables for which this hypothesis could be statistically rejected. We

attempted to use this observation by allowing more than one feature variable to be used for

the conditional probability function of a given node. We started with the expert defined

classification trees of figures 5.4 and 5.5 and added the feature variable for which condi­

tional independence could be rejected a t the highest confidence level until no conditional

independence assertions could be rejected with a confidence level of 0.95. We then used

a feed-forward neural network with no hidden layer a t each node to learn the condition

probability functions, for nodes with only one feature variable this reduced to simply us­

ing the sigmoid function. Unfortunately the resulting classifier did not do any better in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

cross-validation tests than the original classification trees. This was a disappointing result.

However it is often difficult to use statistically significant but relatively weak correlations

to increase the accuracy of a classifier. It is possible to conceive of other attem pts to relax

or extend our probabilistic model but those extensions would take us further away from

directly representing what is known about the biology. Rather than do th a t we opted to

use several general purpose classification algorithms described in study 2 .

5.5.3 D iscu ssio n o f S tudy 1

This study showed that machine learning could be successfully applied to pre­

dicting protein localization sites. The most common class of protein represents 41% and

32% of the E.coli and yeast data respectively. Thus the obtained classification accuracies

of 81.1% and 54.9% are dramatically superior than th a t obtained by simply choosing the

most common class. A direct comparison of the classification accuracies of this system and

the expert system of Nakai and Kanehisa [18, 19] was impossible because the difficulty of

tuning the certainty factors of the rules makes cross-validation with their system infeasible.

However the classification accuracy of our probabilistic model appeared roughly comparable

to theirs. Indeed the reason for the difficulty of this comparison underscores the utility of

using machine learning. Given a classification tree, our program could compute everything

it needed from the training data.

We empirically evaluated three strategies for handling continuous variables. Of

these three, the sigmoid conditional probability function performed slightly better on the

E.coli dataset and uniform binning with a square root number of intervals performed slightly

better on the yeast dataset. The relatively low performance of the sigmoid function with

the larger yeast dataset was consistent with the fact tha t the sigmoid function has only two

free parameters. In fact the sigmoid function is so restrictive that it cannot model many

distributions, such as bimodal ones. Thus we were somewhat surprised a t the relatively

strong performance obtained with the sigmoid function. However when one considers that

the sequence features used for our classification are imperfect sensors of essentially binary

conditions (e.g. either a signal is cleaved or it is not), then one would expect the probability

distribution to basically look like a fuzzy step function. The sigmoid function is well suited

for use as a fuzzy step function and, apparently, therefore also well suited for this application.

Interestingly, the sigmoid function actually showed a higher accuracy on the cross-validation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

test for the complete yeast dataset then when trained on all of the data. While this is

surprising, it is not a contradiction because the sigmoid functions were fit to minimize the

root mean squared error between the function and the data points rather then to directly

minimize the number of misclassified sequences. This example demonstrates the favorable

property of being resistant to overfitting but also shows th a t the limited representational

power of the sigmoid curve is completely saturated with a dataset as large as the yeast

dataset. Thus although we would highly recommend the sigmoid curve for small datasets,

we switched to Fayyad-Irani binning for study 2.

Although we were generally happy with the classification results we were disap­

pointed by the fact th a t none of the 20 POX (peroxisomal) proteins were predicted correctly.

In addition to the pox feature variable used when generating table 5.9, we also tried two

other pox feature variables, neither of which enabled the program to correctly predict any

of the POX proteins. In the discussion of Horton &: Nakai[10] tha t failure was mainly

attributed to the under-representation of POX examples in the dataset. However, as will

be seen in study 2, another classification algorithm was able to predict about half of the

POX examples correctly. Thus much of the blame must be attributed to the probabilistic

model, or at least the particular classification tree used. We defer our interpretation of this

discrepancy until the discussion of modeling versus leveraging correlations.

5.6 Study 2: C’om parison o f Four Classifiers

The section describes the work of Horton & Nakai[ll]. To improve the classi­

fication accuracy and to provide a baseline for our probabilistic model we implemented

three other classification algorithms. For this study we used Fayyad-Irani binning to handle

continuous variables but otherwise the probabilistic model was left unchanged. The three

other classifiers are all standard classifiers from the fields of machine learning and pattern

recognition, however we describe each one here for the convenience of the reader.

5.6.1 k N earest N eig h b o rs

The k nearest neighbors classifier [3] stores the complete training data. New exam­

ples are classified by choosing the majority (or plurality) class among the k closest examples

in the training data. For our particular problem, we first used a linear transformation to

normalize the feature values to lie within the interval [0,1] and then used the Euclidean,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

i.e. sum of squares, distance to measure the distance between examples. Figure 5.6 gives a

graphical interpretation of using ANN to classify objects with two features.

5.6.2 B inary D ecision Tree

Binary decision trees [20] recursively split the feature space based on tests th a t test

one feature variable against a threshold value. Figure 5.7 gives a graphical depiction of the

binary decision tree classifier which can be compared to the graphical depiction of &NN. It

can be seen that a decision tree partitions the feature space into regions whose boundaries

are hyperplanes. The form of the tests at each node of the decision tree constrains the

hyperplanes to be perpendicular to one of the axes of the feature space.

Table 5.10 shows pseudocode for inducing a binary decision tree from a set of

labeled training examples. The tree is constructed by choosing a test consisting of a feature

and threshold value tha t splits the training data into two partitions that have the most

biased distribution of class labels possible. We used the weighted entropy, usually known

as the information gain criteria, for measuring the amount of bias of the class distribution.

Once the test is selected a x2 statistic is used to check if the class distribution in the two

partitions induced by the test are significantly different from the class distribution of the

training data, i.e. the union of the two partitions. If they are not significantly different

the test is not added and the node becomes a leaf in the decision tree labeled by the most

common class label amonst its training data. If however the x 2 test shows a significant

difference, then the procedure is repeated recursively using the induced partitions as training

data. As applied here this statistical test is known as top-down pruning. Note th a t when

used with continuous variables the decision tree inference algorithm can be viewed as a

strict generalization of the Fayyad-Irani binning described above.

5.6.3 N aive Bayes C lassifier

The naive Bayes classifier [7], [14] is an approximation to an ideal Bayesian classifier

which would classify an example based on the probability of each class given the example’s

feature variables. For features Fi, F^, - • • ,Fn an ideal Bayesian classifier would classify

according to

P[C\Fu F2 r -- ,F n].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

/ / classes is the set of class labels, c is the cardinality of classes.
main{

Create root node
split Jf_justified(root)

}
splitJf_justified(node n, set relevant_examples){

feature / , threshold t
chose a pair (/ , t) such th a t weighted_entropy(/ , t, relevant_examples) is minimal
left_examples <— examples 6 relevant_examples such that feature f < t
right-examples <— examples 6 relevant_examples such tha t feature f > t
if null_hypothesis_rejected(relevant_examples, leftjexamples, rightjexamples)

Create new nodes leftjchild, rightjchild
Add leftjchild, right_child to n
splitif_justified(leftjchild, left_examples)
splitJf_justified(right_child, right_examples)

else
label n with the most common class in relevant_examples

}

weighted_entropy(feature f, threshold t, set relevant_examples) {
left_examples <— examples € relevant_examples such tha t feature / < t
right-examples <— examples € relevant-examples such tha t feature / > t

. |left_examples|«ff (left-examples)+|rightjexamples|»tf (right-examples)
|relevant_examples|

}

H(set examples){
Pi, Pi, " ' ,Pc <— proportion of each class in examples
return - J2i=i Pi log Pi

}

null_hypothesis_rejected(set relevant_examples, left_examples, right-examples)
deviation <— 0
for each class in classes

expected <— proportion of class in relevant-examples
for each partition in { left_examples, right jexamples }

observed <— proportion of class in partition
deviation _ deviation +

if deviation > return true
else return false

}

Table 5.10: Pseudocode for binary decision tree learning is shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

That is the probability of the class given all of the features. Unfortunately it is generally

not feasible to obtain enough training data to effectively sample the exponential number

of combinations of values for Fi though Fn. The naive Bayes classifier deals with this by

assuming th a t the probability of a feature given its class is independant of the probability

of any other feature. More precisely, we assume

P[Fl ,F 2,- - . ,F n\C] = '[[P[Fi\C].
i

This assumption can be combined with Bayes law to obtain an approximation to the ideal

Bayes classifier:

F [C |F ,, F2, ■ • •, F J = « P \.C \ I I P [Fi|C|

The advantage of using this approximation is that we only need to estimate statistics for

each possible feature value and not for combinations of feature values.

5.6.4 E valuation M eth od ology

For this study we used stratified cross-validation to estimate the accuracy of the

classifiers. In this procedure the dataset is randomly partitioned into equally sized parti­

tions subject to the constraint th a t the proportion of the classes in each partition is equal.

Empirical tests have indicated th a t this procedure provides more accurate estimates than

plain cross-validation [13].

We employed a cross-validated paired-differences t test to establish the statistical

significance of the difference in performance between two classifiers [13] (a general descrip­

tion of the paired t test for hypothesis testing can be found in introductory textbooks

on statistics, for example [15]). This test makes two assumptions. One assumption is

that the difference of the performance of the two algorithms is normally distributed. The

second assumption is that the performance difference on different test partitions of the

cross-validation is independent. In general both of these assumptions may be violated, in

particular the training partitions of the cross-validation overlap heavily and thus the trials

are not independent [21]. Despite these observations, the t test has been shown empirically

to discriminate adequately [2].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Results with th e E.coli D ataset for 4 Classifiers
Partition ANN Dec. Tree Naive Bayes HN
0 89.28 83.33 82.14 84.42
1 95.24 80.95 84.52 88.10
2 84.52 88.10 82.14 88.10
3 76.19 69.05 75.00 69.05
mean 86.31 80.36 80.95 82.44
std. dev. 8.04 8.10 4.12 9.08

Table 5.11: The results of cross-validation are shown in units of percent accuracy, including
the mean and sample standard deviation. HN is the probabilistic model of Horton & Nakai.
All trials of ANN are for A = 7.

5.6 .5 R esu lts o f Study 2

A summary of the accuracies of the different classifiers is given in table 5.11 for

E.coli and table 5.12 for yeast. Accuracies for the smaller E.coli dataset were estimated

with 4-fold cross-validation to keep the test partitions reasonably large. It can be seen that

the mean accuracy of ANN is higher than the other 3 classifiers for both datasets. Using

the cross-validated paired t test to test whether the mean accuracy of ANN is different than

the other classifiers gives t values of 2.86, 2.59, and 2.88 against the binary decision tree,

Naive Bayes, and HN respectively. For a two-sided t test with nine degrees of freedom the

t value corresponding to a confidence level of 0.95 is 2.2622. By the same t test the only

significant difference for the E.coli dataset is the difference between ANN and Naive Bayes

which has a t value of 3.3169 and is significant a t a confidence level of 0.95.

5.6 .6 k P aram eter

For accuracy estimation we used A values for E.coli and yeast datasets of 7 and 21

respectively. We determined those values by doing leave-one-out cross-validation on each

training partition (this is a nested cross-validation) and taking the best overall value. Since

this procedure averages over all the da ta and therefore indirectly uses the test data, it is

important to know how sensitive the classification accuracy is to the choice of A. figure 5.8

shows the relationship between the A value and accuracy estimated by cross-validation for

the E.coli dataset. The accuracy is highest for A values of 5 and 7 but is higher than the

other three classifiers from A = 3 to A = 25. Figure 5.9 shows the corresponding graph for

yeast. With the larger yeast dataset the highest accuracy is achieved for A values from 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Results w ith the Yeast D ataset for 4 Classifiers
Partition ANN Dec. Tree Naive Bayes HN
0 55.78 55.10 53.74 55.10
1 59.18 51.02 57.82 55.78
2 60.96 56.16 56.16 58.22
3 65.75 58.22 58.22 55.48
4 48.63 50.00 45.21 47.95
5 62.33 57.53 54.11 53.42
6 68.49 65.75 60.27 67.81
7 58.90 57.53 61.64 56.16
8 56.85 56.85 56.16 55.48
9 58.22 57.53 59.59 57.53
mean 59.51 56.57 56.29 56.29
std. dev. 5.49 4.30 4.66 4.93

Table 5.12: The results of cross-validation are shown in units of percent accuracy, including
the mean and sample standard deviation. HN is the probabilistic model of Horton & Nakai.
All trials of ANN are for A = 21.

to 25, but the accuracy for ANN is higher than the other classifiers for values of A from 9 to

99. We did not calculate the accuracy for A > 99.

5 .6 .7 Local A lignm ent D istance w ith ANN

To provide a baseline comparison for the effectiveness of the expert identified fea­

tures used we calculated the accuracy of ANN with the local alignment distances calculated

using the PAM120 matrix. Using the same cross-validation partitions and criteria for choos­

ing A we obtained an accuracy of 67.86% on the E.coli dataset. This is much higher than

the 42.9% accuracy tha t the majority class classifier achieves but is much lower than the

86.31% accuracy achieved by ANN using the expert identified features.

On the yeast dataset the local alignment distances did relatively better, yielding

an accuracy of 52.1%. However, the t test still shows this accuracy to be significantly lower

than the accuracy of the four classifiers with the expert identified features at a confidence

level of 0.97.

5 .6 .8 Confusion M atrices

In order to identify common misclassifications we calculated the confusion matrix

for both datasets using ANN with the expert identified features. These results are shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

Confusion M atrix for E.coli dataset w ith kb
cp imL imS imU im omL om PP

cp 141 0 0 0 0 0 0 2
imL 0 0 0 0 1 1 0 0
imS 0 0 0 1 0 0 0 1
imU 1 0 0 23 11 0 0 0
im 3 0 0 14 58 0 0 2
omL 0 0 0 0 0 4 1 0
om 0 0 0 0 0 0 18 2
PP 4 0 0 0 1 0 0 47

N

Table 5.13: The actual class labels are shown in the vertical column. The predicted class
labels are shown in the row across the top. Thus 2 proteins tha t localize to the cytoplasm
were incorrectly predicted to be localized to the periplasm.

Confusion M atrix for yeast dataset w ith ANN
cyt erl exc mel me2 me3 mit ■ nuc pox vac

cyt 314 0 1 0 2 3 32 91 1 0
erl 0 0 3 1 1 0 0 0 0 0
exc 4 0 22 4 2 0 2 1 0 0
mel 0 0 8 33 0 1 2 0 0 0
me2 9 0 7 10 11 3 7 4 0 0
me3 18 0 0 0 1 122 6 16 0 0
mit 62 0 4 2 5 8 141 19 3 0
nuc 171 0 0 0 2 10 27 216 0 0
pox 4 0 1 1 0 0 1 2 11 0
vac 13 0 3 1 1 6 1 5 0 0

Table 5.14: The actual class labels are shown in the vertical column. The predicted class
labels are shown in the row across the top.

tables 5.13 and 5.14.

5.7 D iscussion o f S tu dy 2

The confusion matrix for E.coli is very encouraging in tha t most of the mistakes

can be seen to result from confusing inner membrane proteins without a signal sequence

with inner membrane proteins with an uncleavable signal sequence and vice versa. We con­

sider this to be a relatively minor error for two reasons. First, for some uses the distinction

between different types of inner membrane proteins may be immaterial. Second, the defi­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

nition of the presence or absence of an uncleavable signal sequence is somewhat arbitrary

and thus the labels of the training examples include some uncertainty. If we collapse the

two classes to form a class “inner membrane protein without a cleavable signal sequence”

we attain a surprisingly high accuracy of 94%!

The confusion matrix for the yeast dataset shows that most of the error is due

to confusing cytoplasmic proteins with nuclear proteins and vice versa. This reflects a

fundamental difficulty in identifying nuclear proteins. One component of tha t difficulty

comes from the fact that unlike other localization signals, the nuclear localization signal

does not appear to be limited to one portion of a protein’s primary sequence [6]. Another

component is the fact that in some cases a protein without a nuclear localization signal

may be transported to the nucleus as part of a protein complex if another subunit of the

complex contains a nuclear localization signal [28].

Another interesting result is the relatively low accuracy of using ANN with the local

alignment distance. This is interesting because the common practice of inferring protein

function by sequence similarity search of the databases is essentially a variant of ANN with

local alignment distance. Our results show that localization site prediction is an example

of a protein classification problem where domain specific features are much more effective

than sequence similarity alone.

One question we would like to answer is why ANN was more effective than the other

classifiers. It is easy to point out some shortcomings with the other classifiers, the binary

decision tree and HN suffer from d a ta fragmentation as the data is repeatedly partitioned.

Naive Bayes has a fixed number of parameters and does not asymptotically approach an

optimal classifier as the number of training examples increases. However we do not have a

solid answer as to why ANN performs better on this task.

In summary, in this study we demonstrated that ANN with expert identified fea­

tures is superior to three other classifiers for classifying proteins based on their cellular

localization sites. For the yeast dataset this difference can be shown to be statistically

significant. We also showed that the expert identified features are much more effective than

local alignment distance and th a t most of the classification errors on the E.coli dataset

are relatively minor errors. The use of ANN and better testing methodology allowed us to

achieve estimated accuracies of 60% and 86% for the yeast and E.coli datasets respectively,

exceeding the accuracies of 55% and 81% from study 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

5.8 Study 3: F inding Substring Features from P rotein Sequence

D ata

This section describes a method[9] for generating and selecting substrings that

correlate to specific classes and preliminary application of the method to the prediction of

protein localization sites in E.coli. The method uses a generalized suffix tree to efficiently

compute correlations between substrings and classes, and a statistical test to select a few

promising substrings to use as features.

5.9 System O verview

Our basic goal was to automatically generate features that can be used to augment

features identified by a human biologist. Our approach to this is shown schematically in

figure 5.10. The substrings present in the database are automatically organized and counted

by the generalized suffix tree. These features then pass through a simple filter which reduces

their number to a manageable level. At this point a decision tree is induced based on those

features. The features selected to be part of that decision tree are then combined with the

human expert defined features to produce the final feature set. Finally we induce a decision

tree using those features.

5.9 .1 C ounting Substring Occurrences w ith th e Suffix Tree

Classifier systems designed for biomolecular sequences often exploit correlations

between the distribution of fixed length substrings in a set of sequences and the function

of those sequences, for example [23]. It is a known but relatively unexploited fact th a t the

generalized suffix tree da ta structure can be used to efficiently examine the distribution of all

the substrings occurring in a collection, i.e. the substrings of any length. We implemented

Ukkonen’s suffix tree construction algorithm [24], [8] in C + + . The algorithm was slightly

modified to add a class count for each suffix. We then built a generalized suffix tree from the

protein sequences in the training set. We prepended an “n” and appended a “c” (for N and

C-terminus) to each protein sequence so that a pattern such as the yeast C-terminal HDEL

could be represented. After the tree construction was complete our software propagated

class counts for suffices up the tree. The result was a tree with a vector of class counts for

each node, and therefore for each substring.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

5.9.2 Feature Selection

As shown in figure 5.10 we used a two stage process for feature selection. The first

stage used a statistical test to identify promising substrings. Specifically we compared the

fraction of occurences of class i within the training sequences which contained a substring

feature / to the fraction of class i within the overall training set. In other words we look

for substring features / such that for some class C{ we can reject the null hypothesis:

Pr[Ci\f] = Pr[Q]

We used a confidence level of 0.9995 which resulted in a manageable number (« 400) of

preliminary features. At this stage we added the length of the protein sequence as an

additional preliminary feature. We then induced a binary decision tree with those features

using a strict confidence of 0.995 for the x2 test. The substring features chosen by the

decision tree induction algorithm were then combined with the human expert identified

features as the final feature set. The confidence level for the x2 test was then relaxed to

0.95 and a decision tree was induced on this final feature set.

5.9.3 C lassifier for Study 3

Although study 2 showed that ArNN gives a somewhat higher prediction accuracy

we chose to use the binary decision tree for this study. There were two reasons for our choice:

first, the binary decision tree has a nice visual representation which makes it relatively easy

to interpret how features are being used and second the decision tree inference algorithm

has a form of feature selection built into it which we used to further cull the candidates

which passed our x2 test.

5 .9 .4 D istrib u tion of Significant Substrings

First we investigated whether the ability to find substrings of arbitrary length was

in fact useful. Figure 5.11 shows the distribution of the lengths of substrings in the dataset

which had a significant correlation with at least one class as determined by the first stage

of the selection procedure shown in figures 5.10. Most of the substrings are of length two

to four but every length from one to eighteen has at least one representative. This data

supports the claim that substrings of various lengths should be considered as candidate

features. Another interesting point is that all of the possible length one substrings passed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

the first stage of selection. This underscores the fact that the substring features described

here are a strict generalization of using amino acid composition as a feature.

5.9.5 R esults and D iscussion o f S tud y 3

In this section we present the results of 4-fold stratified cross validation tests us­

ing the binary decision tree classifier for classification. Table 5.15 shows the accuracy of

different feature sets. Unfortunately the accuracy obtained is not especially encouraging.

Although the substring features alone perform better than the m ajority class (54.2% vs.

42.9%) they did not perform as well as using sequence similarity with fcNN with which we

obtained an accuracy of 67.9% in study 2. Furthermore the use of the combination of the

substring features with the expert identified features did not significantly raise the classifi­

cation accuracy above tha t obtained using the expert identified features alone. However we

did have a surprising anecdotal success in terms of automatically identifying a biologically

meaningful feature. Figures 5.12, 5.13, 5.14, and 5.15 show four examples of decision trees

induced with the preliminary substring features that passed the first stage statistical filter.

Upon inspecting those trees we noticed that three out of the four trees test for the pres­

ence of a C-terminal phenylalanine to classify an example as an outer membrane protein.

The author was unaware of the significance of this feature but a literature search revealed

tha t this feature has been experimentally determined to be required for some proteins to

localize to the outer membrane and was deemed important enough to be the main result of

a journal article[22]. Thus we consider this method promising but concede tha t it must be

refined before it can be used to increase the classification accuracy on this problem. Part

of the problem may come from counting occurrences of exact matches to substrings rather

than allowing approximate matches, since many localization signals are rather loosely de­

fined. One possible scheme would be to add a stage to our selection process which uses the

substrings which scored well with the x 2 test as “consensus sequences” and counting the

occurrences of substrings which match each consensus sequence when a few substitutions

are allowed. The resulting features would then reflect approximate occurrences as well as

exact occurrences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill

Classification Accuracy with Different F eature Sets
Feature Set X2 value Mean S.D.
Majority Class NA 42.9% 0.94%
Preliminary Substrings 0.995 54.2% 4.51%
Expert Features 0.95 80.4% 8.10%
Expert Features +

Preliminary Substrings 0.95 78.8% 6.96%
Expert Features +

Preliminary Substrings 0.995 78.6% 6.07%
Expert -f- Select Substrings 0.95 80.7% 8.15%

Table 5.15: The accuracy obtained with 4-fold stratified cross-validation for different feature
sets is shown. The first entry shows the accuracy of simply choosing the majority class. The
second column is the x2 value used for pruning the decision trees. The last column reports
the standard deviation of the accuracy for different partitions of the cross-validation. The
“preliminary substrings” are the substrings which survive the first stage of feature selection
described in the text. The “select substrings” are the substrings which survive the second
stage as well.

5.10 C hapter D iscussion

5 .1 0 .1 M o d e lin g vs. L e v e ra g in g A ll C o r re la t io n s

Throughout this chapter there is a sort of tension between two separate goals.

One goal is to model the mechanism of protein localization, while the other is to maximize

the classification accuracy. To some extent the two goals are complementary, certainly if

we had a perfect model of the mechanism of protein localization, we could use tha t as an

optimal classifier simply by simulating the localization process for any protein sequence of

interest. However, the converse is not true. It is possible to use correlations to improve the

classification accuracy that have no causal relationship to the actual process of localization.

The work in this chapter makes some effort to achieve both goals but the emphasis

shifts towards classification accuracy as the chapter progresses. In study 1 the classification

trees extended the biological knowledge reflected in the expert identified features by dictat­

ing tha t the features be used in the way in which they were originally intended. However

it should be noted tha t a few of the “expert identified features” such as aac and vac (see

tables 5.3, 5.5) were actually the results of discriminant analysis. By using general purpose

classifiers in study 2 we were able to raise the classification accuracy somewhat, but in

the process allowed features to be used in unintended ways. For example, despite the fact

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

that the results of study 1 indicated that the pox feature variable did not discriminate well

enough to correctly predict proteins which where localized to the peroxisomes, in study 2

&NN was able to correctly predict 11 out of 20 examples. It seems likely tha t &NN used

correlations from other feature variables to accomplish that. This trend was taken a step

further in study 3 where correlation was explicitly used as a criterion for choosing features.

We believe th a t a t this point it may be best to develop two systems: one which is

solely concerned with achieving a high classification accuracy and one which tries to model

the protein localization process as closely as possible. For the first system it is easy to

imagine taking measures to increase the classification accuracy once all pretenses of mod­

eling are abandoned. For example, proteins with known DNA-binding motifs can usually

be expected to be localized to the nucleus, one of the localization sites which our current

system has the most trouble with. Use of this kind of prior knowledge about the correlations

between sequence and function and between function and localization site may substantially

improve the prediction accuracy. The second system could be improved as well. One inter­

esting direction would be to attempt to model the dynamics of protein localization. On the

biology side, chase studies which combine immunoflouresence with the timed suppression

of protein synthesis could provide an experimental technique for gathering data. While on

the computer science side the use of dynamic Bayesian networks may provide useful as a

framework for a model which is learned from training data. It should be noted that besides

the scientific interest in modeling biological processes, there is another advantage to the

approach of emphasizing relationships which reflect the localization mechanism. Sequence

similarity based sequence comparisons, which are routinely done on new protein sequences,

can be expected to primarily reflect functional relationships rather than localization sig­

nals. Thus a model of protein localization could provide additional, relatively independent

evidence to the biologist.

5.10.2 O ther A pplications

This chapter can be considered to be a case study on the effective application of

machine learning to a biosequence classification problem. Features were chosen primarily by

using prior domain knowledge but machine learning was applied to discover features which

complement those based on prior knowledge. A classifier which reflected the structure of

the problem was then constructed by hand and compared to several standard classification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

algorithms. The result is a system which effectively leverages both biological knowledge and

machine learning. We believe that this approach can be successful for other classification

problems in biology. We should note that hidden Markov models (HMM’s) have enjoyed

much success in the area of protein classification, however it is not clear how to apply them

to problems which are not naturally viewed as generating sequences from a distribution. The

methodology applied in this chapter offers an alternative to HMM’s which clearly separates

the features used for classification and the classification algorithm. Interestingly it would

be quite plausible for the output of an HMM to be used as a feature.

5.11 Software

We have developed a C program to implement the computations necessary to

perform the probabilistic inference described above in the probabilistic model section. The

program also learns the conditional probability tables (function) using any of the three

methods described in the section on conditional probabilities. Alternatively the program

can read in conditional probability tables from a file and use them when doing inference. The

program inputs a file which describes the topology and feature variables of the classification

tree in a simple language and another file which contains the values of the feature variables

for the objects. The output of the program is the probability of each leaf class for each

input object. The other three classifiers were implemented in C, or both C and Perl for

&NN. Ukkonen’s linear time suffix tree construction algorithm was implemented in C ++.

All of the software described in this chapter is available upon request.

5.12 Acknowledgm ents

I would like to thank Kenta Nakai showing me this wonderful application and

working with me on study 1 and 2, and also for his helpful comments on study 3, particularly

for pointing out the paper on the C-terminal phenylalanine. Geoff Zweig and Kevin Murphy

made helpful comments on the machine learning aspects of study 1 and 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.5: The classification tree used for yeast protein localization is shown. The leaf
nodes are labeled with the class that they represent, while the other nodes are labeled with
their feature variable. All the edges shown are directed downward and the edges connecting
feature variable to their classification variables are not shown explicitly. The labels are
abbreviations (see tables 5.4 and 5.5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l
O

Q
i

C
^

O
Q

T
I

115

k Nearest Neighbors

Featurel

Figure 5.6: The use of the ANN classifier to classify objects with two features is shown. The
coordinates labeled A, B, or C represent examples in the training set labeled as class A, B,
or C. The three concentric dries represent k values of 1, 3, and 5. In each case the object
at the center of the cirle would be classified as belonging to class B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

F1)
<t1? — >=«?

I F2
<t2? — ^ >=t2?

Class C

Class B Class A

Binary Decision Tree

Featurel (F1)

Figure 5.7: The use of the binary decision tree classifier to classify objects with two features
is shown. The coordinates labeled A, B, or C represent examples in the training set labeled
as class A, B, or C. The decision tree shown in the upper part of the figure corresponds to
dividing the space with the line / I = £1 and the ray /2 = £2, / I < £1 as shown in the lower
part of the figure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

A ccu racy v s . k v a lu e fo r E .coti
87

86

kNN

& 84

HN

N a iv e B a y e s

D e c is io n T re e

k value

Figure 5.8: The accuracy of ANN for the E.coli dataset is shown for odd A from 1 to 33.
The accuracy of the decision tree, Naive Bayes, and HN is also shown.

A ccu racy v s . k v a lu e fo r Y e a s t

kNN

D e c isio n T re e

N a iv e B a y e s . HN

90 100
k v a lu e

Figure 5.9: The accuracy of ANN for the yeast dataset is shown for odd k from 1 to 99. The
accuracy of the decision tree, NaiVe Bayes, and HN is also shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Feature Selection Procedure

Substrings

Pr[C. lf]='Pr[C J?

Confidence = 0.9995

StCandidate {Substrings
>400

Decision Tree Induction

X =0.995

Substring Features
- 10

Expert Defined
Features

Decision Tree Induction

x = 0.95

Figure 5.10: An overview of the generation, selection, and use of substring features is shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fre
qu

en
cy

119

250

200

150

100

50

0
0 2 4 6 8 10 12 14 16 18 20

length of substring

Figure 5.11: A histogram of the distribution of substrings which correlate significantly to
at least one class is shown.

Length of Significant Substrings
T I I I I I I I T

I I I I I I I I I I I I I I I I I I I I I I 1— I— I - ■ ■ ' ' '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

str LI2.5

str_Fc0.5

: > =
*r

^ o m e ^str_E13.5

> = > =

str_K23.5

str LD0.5

> = > =

str K12 str PND0.5 str EL3.5

>=

str E35.5 str Y23.5 str_L13.5 imS str ELI.5> = > =

> = > = > =

pep cyp ime

Figure 5.12: The decision tree induced from the first partition of cross-validation with the
substring features tha t passed the first statistical test is shown. Internal nodes are labeled
with their features and thresholds. Substring feature have names starting in “str_” . Thus
the node labeled “str_EL3.5” tests for 4 or more occurences of the substring “EL” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

str LI2.5

str_Fc0.5

< >=

^ o m e ^

> =

str ED0.5 str D19.5

> = > =

str DV1.5 str WL2.5 str L18.5 str SA5.5

> = > = > = > =

pep cyp ime

Figure 5.13: The decision tree induced from the second partition of cross-validation with
the substring features that passed the first statistical test is shown. Internal nodes are
labeled with their features and thresholds. Substring feature have names starting in “str_” .
Thus the node labeled “str_WL2.5” tests for 3 or more occurences of the substring “WL” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 2

str D15.5

str FI 2.5 > =

> =

str m .5 str C2.5

> = > =

str M5.5 imL str_FG2.5 str R11.5> =

> = > = > =

omL str SA3.5 str AT4.5 str_Y19.5ime > =

> = > = > =

cyp pep ome

Figure 5.14: The decision tree induced from the third partition of cross-validation with the
substring features tha t passed the first statistical test is shown. Internal nodes are labeled
with their features and thresholds. Substring feature have names starting in “str_” . Thus
the node labeled “str_SLFA0.5” tests for 1 or more occurences of the substring “SLFA” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

str D15.5

> =

str C2.5

> =

length318 str LI4.5

str K12.5 str S47.5 str Fc0.5

> = > = > =

str 17.5 str SF3.5> = ome

> = > = > =

str WA1.5ime

> =

cyp pep

Figure 5.15: The decision tree induced from the fourth partition of cross-validation with the
substring features th a t passed the first statistical test is shown. Internal nodes are labeled
with their features and thresholds. Substring feature have names starting in “str_” . The
node labeled “length318” tests for sequences of length greater than or equal to 318.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

Bibliography

[1] A. Bairoch and R. Apweiler. The swiss-prot protein sequence data bank and its new

supplement trembl. Nucleic Acids Research, 24:21-25,1996.

[2] Thomas G. Dietterich. Statistical tests for comparing supervised classification learning

algorithms. http://www.CS.ORST.EDU/ tgd/cv/jr.htm l, 1996.

[3] Richard 0 . Duda and Peter E. Hart. Pattern Classification and Scene Analysis. John

Wiley & Sons, 1973.

[4] Harvey Lodish et al. Molecular Cell Biology. Scientific American Books, 1995.

[5] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-valued

attributes for classification learning. In International Joint Conference on Artificial

Intelligence, pages 1022-1027, 1993.

[6] J. Garcia-Bustos, J. Heitman, and M. N. Hall. Nuclear protein localization. Biochimica

et Biophysica Acta, 1071:83-101,1991.

[7] I. J. Good. The Estimation of Probabilities: An Essay on Modem Bayesian Methods.

MIT Press, 1965.

[8] Dan Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge Press, 1997.

[9] Paul Horton. Using substrings to classify proteins by their cellular localization sites.

Class Project for CS281 at UC Berkeley, 1996.

[10] Paul Horton and Kenta Nakai. A probabilistic classification system for predicting

the cellular localization sites of proteins. In Proceeding o f the Fourth International

Conference on Intelligent Systems for Molecular Biology, pages 109-115, Menlo Park,

1996. AAAI Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.CS.ORST.EDU/

125

[11] Paul Horton and Kenta Nakai. Better prediction of protein cellular localization sites

with the k nearest neighbors classifier. In Proceeding of the Fifth International Confer­

ence on Intelligent Systems for Molecular Biology, pages 147-152, Menlo Park, 1997.

AAAI Press.

[12] P. Klein, Minoru Kanehisa, and C. DeLisi. The detection and classification of

membrane-spanning proteins. Biochim. Biophys. Acta, 815:949-951, 1985.

[13] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In International Joint Conference on Artificial Intelligence, 1995.

[14] P. Langley, W. Iba, and K. Thompson. An analysis of bayesian classifiers. In Proceed­

ings of the tenth National Conference on Artificial Intelligence, pages 223-228. AAAI

Press and MIT Press, 1992.

[15] Richard J. Larsen and Morris L. Marx. An Introduction to Mathematical Statistics and

its Applications. Prentice-Hall, 1986.

[16] D. J. MeGeoch. On the predictive recognition of signal peptide sequences. Virus

Research, 3:271-286, 1985.

[17] P. M. Murphy and D. W. Aha. Uci repository of machine learning databases.

http://www.ics.uci.edu/ mlearn, 1996.

[18] Kenta Nakai and Minoru Kanehisa. Expert system for predicting protein localization

sites in gram-negative bacteria. PROTEINS: Structure, Function, and Genetics, 11:95—

110, 1991.

[19] Kenta Nakai and Minoru Kanehisa. A knowledge base for predicting protein localization

sites in eukaryotic cells. Genomics, 14:897-911, 1992.

[20] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106,1986.

[21] S. Salzberg. On comparing classifiers: A critique of current research and methods.

http://www.cs.jhu.edu/ salzberg, 1995.

[22] et al. Struyve. Carboxyl-terminal phenylalanine is essential for the correct assembly of

a bacterial outer membrane protein. Journal o f Molecular Biology, 218:141-148,1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ics.uci.edu/
http://www.cs.jhu.edu/

126

[23] Edward C. Uberbacher and Richard J . Mural. Locating protein-coding regions in

human dna sequences by a multiple sensor-neural network approach. Proc. Natl. Acad.

Sci., USA, 88:11261,11265,1991.

[24] Esko Ukkonen. Constructing suffix trees on-line in linear time. ”Algorithms, Software,

Architecture”, 1:484-492,1992.

[25] G. von Heijne. A new method for predicting signal sequence cleavage sites. Nucleic

Acids Research, 14:4683-4690, 1986.

[26] G. von Heijne. The structure of signal peptides from bacterial lipoproteins. Protein

Engineering, 2:531-534, 1989.

[27] YPD. Yeast protein database. http://www.proteome.com/YPDhome.html, 1997.

[28] L. Zhao and R. Padmanabhan. Nuclear transport of adenovirus dna polymerase is

facilitated by interaction with preterminal protein. Cell, 55:1005-1015, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.proteome.com/YPDhome.html

IMAGE EVALUATION
TEST TARGET (Q A -3)

1.0

l . l

B2-8 123 n j i g
12.2Li

1*>

E itstt
2.0

1.8

1.25 1.4 1.6

150mm

6"

IIVU4GE. I n c
1653 East Main Street
Rochester, NY 14609 USA
Phone: 716/482-0300
Fax: 716/288-5989

0 1993, Applied Image, In c , All R ights R e s e rv e d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

